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It is well-established that the DNA methylation landscape of normal cells undergoes 
a gradual modification with age, termed as ‘epigenetic drift’. Here, we review the 
current state of knowledge of epigenetic drift and its potential role in cancer etiology. 
We propose a new terminology to help distinguish the different components of 
epigenetic drift, with the aim of clarifying the role of the epigenetic clock, mitotic 
clocks and active changes, which accumulate in response to environmental disease risk 
factors. We further highlight the growing evidence that epigenetic changes associated 
with cancer risk factors may play an important causal role in cancer development, 
and that monitoring these molecular changes in normal cells may offer novel risk 
prediction and disease prevention strategies.
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DNA methylation, a promising 
epigenetic cancer biomarker
Epigenetics can be defined as the study of 
mitotically heritable changes in gene regula-
tion and cellular phenotype that cannot be 
explained by changes in DNA sequence  [1]. 
Among the most important epigenetic modi-
fications are those which affect DNA directly, 
mainly through covalent addition of a methyl 
(-CH

3
) group at cytosines of CG dinucleo-

tides (referred to commonly as ‘CpGs’), 
although such DNA methylation (DNAm) 
can also occur in a non-CpG context [2]. Most 
CpGs in the human genome are methyl-
ated, occurring mainly in intergenic regions, 
repetitive elements and gene bodies. The 
unmethylated form occurs preferentially in 
the context of CpG islands (CGIs, regions of 
particular high CpG density), which colocal-
ize with gene promoters [3]. CpG sites located 
in regions just outside CGIs (termed shores 
and shelves), or in distal regulatory elements, 
notably enhancers, exhibit the highest vari-
ability in DNAm  [4,5]. DNAm can control 

gene expression, with promoter DNAm typi-
cally associated with gene silencing  [3,6]. On 
the other hand, unmethylated gene promot-
ers can associate with either active or inactive 
(poised) expression states, depending on the 
levels of nearby histone marks [7].

One of the most remarkable features of 
the DNAm landscape is that it gets reset 
during human embryogenesis, subsequently 
playing an essential role in development and 
tissue differentiation [6]. Specifically, DNAm 
in a differentiated cell of a given lineage is 
thought to play a critical role in irreversibly 
silencing genes that are not required for spec-
ification of that lineage  [5]. It further plays 
a key role in determining enhancer func-
tion and transcription factor binding dur-
ing development [5]. Once acquired, DNAm 
constitutes a metastable modification, which 
is maintained during cell division due to the 
action of DNA methyltransferase enzymes. 
However, the fidelity of the DNAm copying 
machinery is significantly lower than that of 
its DNA counterpart, which may result in 
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‘epimutations’ every time a cell divides [1]. The rate of 
such epimutations has been estimated to be as high as 
10-5 per cytosine per cell division (cf. with a mutation 
rate of bases within CpG nucleotides of ∼10-7 per cell 
division [8,9]), and may result in either loss of DNAm 
(‘hypomethylation’) at sites that are normally methyl-
ated, or in DNAm gains (‘hypermethylation’) at sites 
that are usually unmethylated [10].

Importantly, DNAm changes have been seen in a 
wide range of complex diseases, including cancer [1,11]. 
Specifically, two cancer hallmarks are hypermethyl-
ation of gene promoters, often affecting tumor sup-
pressor genes and hypomethylation of intergenic 
regions [11]. Because of this, and because it constitutes a 
metastable, directly amplifiable, DNA-based mark (as 
opposed to, e.g., RNA ‘snapshot’ measurements, which 
are strongly time-dependent), DNAm offers great 
potential as a cancer biomarker  [12–15]. Importantly, 
DNAm is also highly malleable, and has been shown 
to be influenced by many environmental exposures, 
including diet and levels of in utero nutrients  [16–18]. 
Thus, DNAm represents not only an attractive bio-
marker for risk prediction and early detection of com-
plex disease, but also offers to improve our understand-
ing of the interface between environmental risk factors 
and disease phenotypes [1,18–19].

Epigenetic drift
Although age-associated DNAm changes affect-
ing individual genes in normal tissue have long been 
observed [20,21], one of the first studies to explore this 
phenomenon beyond single genes was a 2005 study by 
Fraga et al. [22]. This study compared DNAm profiles 
of a number of monozygotic twins of different ages, 
and observed that while newborn twins exhibited 
effectively identical methylomes, adult twins showed 
divergent patterns with the level of divergence increas-
ing with age. Due to the nonlongitudinal nature of this 
study, as well as limitations in sample size and genomic 
coverage, no apparent pattern of DNAm divergence 
was observed, with the loci exhibiting divergence 
within a twin pair not overlapping with the corre-
sponding loci defined by another twin pair. Thus, the 
authors referred to the observed divergence in DNAm 
within twin pairs with the term ‘epigenetic drift’, to 
highlight the apparent stochastic nature of age-asso-
ciated DNAm changes. However, in what follows we 
shall use a more general definition of epigenetic drift to 
encompass any type of age-associated DNAm change, 
be it of a stochastic nature or not.

Larger and higher genome-coverage studies subse-
quently confirmed that the DNAm landscape of nor-
mal cells changes substantially with age [23–27]. Several 
important novel insights were obtained from these 

studies. First, age-associated DNAm alterations do not 
happen randomly across the genome. For instance, it 
was observed that age-associated hypermethylation is 
more likely to happen at sites that carry bivalent  [26] 
or PRC2 repressive marks  [25], as defined in human 
embryonic or adult stem cells. By contrast, age-
associated hypomethylation appears to target strong 
enhancers and active promoters  [28]. Second, specific 
age-associated DNAm changes occur independently of 
tissue and cell-type, and this seems to be particularly 
true for age-associated hypermethylation, and specifi-
cally for the PRC2-enriched component [25,28–29]. For 
instance, an age-associated PRC2-marked 69 CpG 
DNAm signature derived in blood was shown to cor-
relate with chronological age in other normal tissue 
types (e.g.,  lung and ovarian tissue)  [25], and another 
age-related module enriched for PRC2 members was 
found to co-vary with age in brain and blood [30]. This 
cross-tissue independence not only demonstrates that 
a component of drift reflects an underlying universal 
mechanism, but also that drift in a complex tissue is not 
entirely the result of underlying alterations in cell type 
proportions. Indeed, this has been shown explicitly, as 
similar age-associated DNAm alterations are observed 
in different subsets of purified blood cells [26]. Third, 
age-associated DNAm alterations are also seen in adult 
stem cell populations, notably mesenchymal stem cells 
and hematopoietic stem/progenitor cells [25,31–33]. This 
supports the view that a component of epigenetic drift 
accrues in the underlying stem cell population of a 
given tissue, giving rise to the corresponding observed 
changes in the differentiated cells that make up the 
bulk of the tissue.

Horvath’s epigenetic clock
The consistency and robustness of age-associated 
DNAm alterations across different tissue and cell 
types led to a number of studies to attempt predict 
the chronological age of an individual  [34–37]. While 
some of these DNAm-based age predictors have been 
derived in specific tissues  [34,35], Horvath derived a 
multitissue age predictor, which he then validated in 
a large number of independent datasets, encompass-
ing in total over 8000 samples from over 50 different 
tissue and cell types  [36]. This multitissue age predic-
tor consists of 353 CpGs, and achieved a remarkable, 
clock-like accuracy on independent data with a median 
absolute deviation error of less than ±5 years. Although 
no direct comparison with other biological assays has 
yet been performed, it would appear that Horvath’s 
‘epigenetic clock’ may achieve substantially higher 
accuracies than those based on measuring telomere 
length or other molecular features such as T-cell DNA 
rearrangements  [38–42]. Moreover, although studies 
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have found age-associated copy number  [43,44], muta-
tional [45] and gene expression [46] signatures, none of 
these have yet been developed into accurate age pre-
dictors, suggesting that these other types of molecular 
profiles may not be as relevant as DNAm for predicting 
chronological age.

DNAm-based age predictors containing far fewer than 
353 marker CpGs have also been reported  [34,35,37,42]. 
For instance, one study showed that DNAm values at 
only three CpG sites can accurately predict chronologi-
cal age  [42]. Another study indicated that 74% of the 
variation in chronological age can be predicted with 
as few as two CpG loci  [35]. However, these age pre-
dictors have only been tested in specific tissues, or not 
extensively tested in other tissue types  [36,47]. Another 
DNAm-based age predictor is the one developed by 
Hannum et al. [34], which trained its predictor on one 
of the largest whole blood datasets encompassing over 
650 samples. While this 71 CpG age predictor also 
achieved high accuracy in independent blood datasets, 
recalibration of the predictor was necessary to achieve 
comparable accuracies in other tissue types [34].

There are a number of reasons why age predictors 
like that of Hannum  et  al. may not achieve accura-
cies comparable to those of Horvath’s clock. First of 
all, none of the age predictors developed so far made 
explicit adjustment for age-associated changes in cell-
type composition  [48,49]. Since age-associated changes 
in tissue composition will vary from one tissue type 
to another, deriving an age predictor from one tissue 
type only, without correcting for changes in cell-type 
composition, will certainly ‘bias’ the predictor toward 
the tissue of origin. Because Horvath’s epigenetic clock 
was trained on data from over 30 different tissue and 
cell types, this epigenetic clock is unlikely to have been 
confounded by tissue-specific age-associated changes 
in tissue composition. Second, an age predictor like 
that of Hannum et al. is likely to capture age-cumula-
tive effects of specific endogenous and environmental 
factors, which are specific to blood-tissue and there-
fore not generalizable to other tissue types. In contrast, 
Horvath’s clock, having been derived across so many 
different tissue types, is unlikely to have been con-
founded by these other tissue-specific effects. Third, 
tissue-specific DNAm levels could confound age pre-
dictors derived from one tissue type, when assessed 
in other tissue types, therefore, requiring recalibra-
tion  [34]. A final reason could be that highly accurate 
quantification of chronological age from DNAm pro-
files may require a substantial number of CpGs, as is 
the case with Horvath’s clock  [36]. This would seem 
necessary if there is a substantial element of stochastic-
ity underlying epigenetic drift  [22]. Indeed, although 
it is clear that some genomic loci are more likely to 

undergo epigenetic drift than others, a more realistic 
picture is that of each CpG in the genome carrying 
an intrinsic probability of acquiring age-associated 
DNAm changes. Thus, the robustness of Horvath’s 
clock stems in part from it measuring an aggregate 
level of absolute deviation in DNAm over a relatively 
large and specific set of 353 CpGs. In fact, the clock’s 
accuracy only requires that a significant number of the 
353 CpGs exhibit the expected DNAm deviations in 
a given sample, in order for the average deviation to 
then represent a meaningful number. Comparing two 
separate samples (e.g., different tissues from the same 
individual, or samples from identically aged individu-
als, e.g.,  twins), the specific subset of 353 CpGs that 
are altered in each sample may differ substantially. 
Thus, a highly accurate molecular clock is possible 
despite a level of underlying stochasticity, provided the 
clock is defined over a sufficient number of loci. Nev-
ertheless, future high-coverage whole-genome bisulfite 
sequencing studies may pinpoint a few ‘nonstochastic’ 
loci, which, not unlike ‘lighthouse beacons’, keep track 
of chronological age with an accuracy comparable, or 
even exceeding that of Horvath’s clock.

Significance & interpretation of the 
epigenetic clock
Although Horvath’s epigenetic clock appears to pro-
vide, on average, a highly accurate measure of chrono-
logical age in seemingly healthy tissues, it is clear that 
for specific samples, large deviations/errors are also 
observed. This has led to the proposal that the devia-
tion between DNAm age (‘DNAm-age’), that is, the 
value predicted by the epigenetic clock, and chrono-
logical age may be informative of the true ‘biological’ 
age of a tissue  [36]. Thus, the biological age of a tis-
sue in an individual is not only a function of the per-
son’s chronological age, but also a function of other 
additional endogenous and exogenous factors, some of 
which may cause age acceleration, whereas others may 
cause age deceleration (see e.g., [19]).

A number of studies have explored whether biologi-
cal age, specifically the difference between DNAm-
age and chronological age, appears aggravated in tis-
sues associated with disease phenotypes  [50–54]. For 
instance, increased ‘age acceleration’, that is, tissues 
from individuals where DNAm-age is higher than the 
chronological age, has been observed in the human liver 
of obese individuals  [50], in HIV-1-infected individu-
als [52] and in Down syndrome patients [53]. DNAm age 
in blood has also been shown to correlate with physical 
and cognitive fitness [54]. The significance of DNAm-
age in the context of epithelial cancer is, however, less 
evident, since age acceleration is not observed across all 
cancer types [47,55]. The interpretability of DNAm-age 



10.2217/epi-2015-0017 Epigenomics (Epub ahead of print) future science group

Review    Zheng, Widschwendter & Teschendorff

in affected tissues is also complicated due to potential 
confounding effects of the disease itself.

Other studies have, therefore, explored the possibil-
ity that Horvath’s DNAm-age may be predictive of 
future disease risk. For instance, DNAm-age in blood 
has been found to be higher in men compared with 
women, a result which is consistent, in principle, with 
men’s average lower longevity [34,36]. DNAm-age in the 
blood of postmenopausal women has been shown to 
correlate with the prospective risk of lung cancer  [56]. 
A recent study also found DNAm-age in blood to be 
predictive of all-cause mortality  [57]. Although not 
explicitly using DNAm-age, another study showed 
how DNAm of CpGs defining an age-associated 
DNAm signature in blood [25] always exhibited hyper-
variability in cervical normal cells, which 3 years later 
progressed to a high-grade cervical intraepithelial neo-
plasia [58]. Although all these results support the notion 
that DNAm-age could indicate disease risk for a num-
ber of different diseases, the reproducibility of these 
findings in independent cohorts still needs to be dem-
onstrated, specially in those studies where progression 
of the DNAm changes could not be assessed.

A pressing unanswered question is the biological 
mechanism(s) underpinning the epigenetic clock. An 
initial attractive hypothesis would be that it constitutes 
a ‘mitotic clock’, measuring the number of cell divi-
sions incurred by long-lived stem cells [59]. Under this 
model, incomplete maintenance of DNAm patterns 
by DNA methyltransferase enzymes (e.g.  DNMT1) 
during DNA replication would lead to epimutations. 
This interpretation, however, cannot explain the abil-
ity of the clock to accurately predict chronological age 
across tissue types that differ so widely in their over-
all proliferation and turnover rates, including highly 
proliferative tissues such as colon and nonproliferative 
ones, such as brain [36]. Thus, while it is entirely plau-
sible that components of other age-associated DNAm 
signatures may be mitotic in nature, as suggested by 
Beerman and Rossi [32] and Issa [59], the same does not 
appear to hold for Horvath’s epigenetic clock. Instead, 
the epigenetic clock may reflect the indirect effects 
of the work performed by an epigenetic maintenance 
system, although at present, it is unclear what this 
epigenetic maintenance system may actually be [36].

Epigenetic drift & cancer risk factor DNAm 
signatures
Among risk factors for cancer, age is special, not only 
because it is the main risk factor for most cancer types, 
but because it indirectly captures the effects of age-
associative cumulative exposure to exogenous and 
endogeneous risk factors. Thus, epigenetic drift may 
reflect molecular alterations caused by genetic and 

environmental risk factors. This in turn implies that 
if one wishes to study the effect a cancer risk factor 
may have on the DNA methylome, that adjustment for 
age is paramount. Over the last few years, many stud-
ies have explored the impact of major cancer risk fac-
tors on the DNA methylome of normal cells (Table 1). 
These studies include the effect of: HPV infection in 
normal cervical smears [58], smoking in blood and buc-
cal tissue  [60–65], BRCA1 mutation in blood  [66], sun-
light (UV) exposure in skin  [67,68], obesity in blood 
and adipose tissue [69–71], inflammation (inflammatory 
bowel disease) in colon tissue [72–74], alcohol intake in 
blood [75] and asbestos exposure in blood (Table 1) [23]. 
For other more specific chemical exposures, see [16].

Interestingly, if one focuses on the hypermethyl-
ated components of these cancer risk-factor DNAm 
signatures, one observes that PRC2/bivalently marked 
sites are often significantly enriched (Table 1). This 
is the case for age  [25–27], HPV infection  [58], smok-
ing [62], obesity [69], BRCA1 mutation [66] and inflam-
mation  [73]. The biological significance of this com-
mon PRC2 enrichment is, however, unclear. First of 
all, most of these enrichments have been established 
in relation to PRC2/bivalent marks, as determined in 
the human embryonic stem cell ground state, which is 
clearly not the most relevant one. Nevertheless, results 
have been shown to carry over to the corresponding 
PRC2/bivalent marks obtained in relevant adult stem 
cell populations, as for instance in the case of CD133+ 
hematopoietic progenitor cells  [25]. Second, most of 
the PRC2 targets represent transcription factors that 
are normally not expressed in the tissue of interest [81]. 
However, this does not exclude the possibility that a 
few key tissue-specific transcription factors are silenced 
through promoter hypermethylation. Therefore, it 
is entirely plausible that age-associated cumulative 
DNAm changes at PRC2 targets, which often encode 
key developmental and tissue-specific transcription 
factors, may result in deregulation of normal homeo-
stasis, which is a key cancer hallmark [82–84].

A common cancer risk factor epigenetic 
signature?
The common enrichment for PRC2 sites among dif-
ferent cancer risk DNAm signatures also suggests that 
similar sites may be affected, irrespective of the risk fac-
tor. Although a comprehensive analysis of the overlap 
of such risk-factor DNAm signatures is still lacking, 
there are already some hints that signatures predictive 
for one risk factor may also be predictive for another. 
For instance, one study showed how an age-associated 
DNAm signature, involving PRC2 marked CpG sites 
that become hypermethylated with age, could discrim-
inate cervical neoplasias from age-matched normal 
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samples, suggesting that specific loci which undergo 
age-related DNAm changes do so also in response 
to HPV infection (the major risk factor for cervical 
cancer development)  [25]. A more recent pan-cancer 
study compared a smoking-associated DNAm signa-
ture derived in buccal (epithelial) tissue with DNAm 
changes in cancer, and found that a DNAm-based 
smoking index (SMKI) constructed from this buccal 
DNAm signature, was highest in smoking-related lung 
cancers, but, surprisingly, also higher in every single 
cancer type compared with its respective normal tis-
sue, including cancers which are not smoking-associ-
ated (e.g., endometrial cancer) [62]. That the SMKI is 
highest for smoking-associated lung cancer strongly 
supports the view that the smoking DNAm signature 
captures effects specific to the smoke carcinogens. On 
the other hand, that the SMKI is higher in every single 
cancer type compared with its corresponding normal 
tissue also suggests that a significant component of the 
smoking DNAm signature captures effects which are 
not specific to smoking. These additional nonspecific 
effects, therefore, suggest that other cancer risk factors 

(e.g., a high estrogen to progesterone ratio associated 
with obesity in the case of endometrial cancer [85]) may 
actively cause DNAm changes in normal tissue, which 
are similar to those induced by smoking. However, 
without an improved understanding of the biological 
mechanisms by which cancer risk factors may actively 
cause DNAm changes in normal cells, the existence of 
a common ‘causal’ cancer risk factor DNAm signature 
remains speculative.

A much more likely explanation as to why DNAm 
signatures associated with different cancer risk fac-
tors may overlap, or indeed why the smoking buccal 
DNAm signature reported in  [62] is aggravated in all 
cancer types, is that these signatures contain a com-
mon ‘mitotic clock’ component (Figure 1), which 
would appear accelerated both in normal cells exposed 
to inflammation (e.g.,  buccal cells exposed to smoke 
carcinogens), as well as in highly proliferative cancer 
cells [59]. Interestingly, this ‘mitotic clock’ component 
also seems to be particularly well-defined at PRC2 
sites, which are usually unmethylated in normal cells, 
but which would acquire stochastic hypermethylation 

Table 1. Table lists major cancer risk factors for which epigenome-wide association studies have 
been conducted in a number of tissue types.

Cancer risk factor Normal tissue Platform PRC2/bivalent 
enrichment?

Ref.

Age Blood (WB + purified) 27k and 450k Y [25,26]

  Colon 27k Y [76]

  Adipose 450k Y [69]

  Brain 27k Y [28,30,77]

  Kidney 27k Y [28]

  Muscle 27k Y [28]

  Buccal (saliva) 27k Y [29]

HPV Cervix 27k Y [58]

BRCA1 mutation Blood (WB) 27k Y [66]

Smoking Blood (WB) 450k Y [60]

  Buccal 450k Y [62]

Obesity/BMI Blood CHARM and 450k N [70,71]

  Adipose 450k Y [69]

Alcohol Blood (PBMCs) 27k N [75,78]

UV light Skin 27k and 450k N [67,68]

EBV Blood (B cell) WGBS Y [79]

IBD Intestine/colon CGI agilent Y [80]†

We also indicate if a DNA methylation signature for the cancer risk factor was enriched for PRC2 or bivalently marked sites as determined 
in human embryonic stem cells. This enrichment is in the hypermethylated part of the signature since these PRC2/bivalent sites are normally 
unmethylated in the control samples. We also list some of the references where enrichment for PRC2/bivalent sites was Y, or those where 
findings were N.
†In mice.
450k/27k: Illumina Human Methylation 450k/27k beadchip; BMI: Body mass index; CGI: CpG island, EBV: Epstein–Barr virus; HPV: Human 
papilloma virus; IBD: Inflammatory bowl disease; N: Negative; PBMC: Peripheral blood mononuclear cells; WB: Whole blood;  
WGBS: Whole-genome bisulfite sequencing; UV: Ultraviolet, Y: Observed.
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Figure 1. The three major components of epigenetic drift. We define epigenetic (DNAm) drift as any type of age-associated DNAm 
change. This epigenetic drift has a cell-intrinsic and tissue-type independent component, termed ‘Horvath’s epigenetic clock’, which 
predicts chronological age with a remarkably high degree of accuracy. Another cell-intrinsic but tissue-type dependent component 
of DNAm drift is representing an ‘epigenetic mitotic clock’, which measures the cumulative number of cell divisions that the stem cell 
population of the tissue has undergone. The tick rate of this epigenetic mitotic clock may be influenced by endogenous (e.g., genetic 
risk factors) and exogenous (e.g., environmental risk factors) factors. These same cell-extrinsic factors may cause other types of active 
DNAm alterations, for instance, as seen for the AHRR gene in response to smoking or those that may be mediated by hormonal 
factors or viral infections.  
DNAm: DNA methylation.
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in a more proliferative state (Figure 2) [25,32,59,82]. This 
PRC2 enriched hypermethylation signature is also the 
one which is seen in aged stem cells and during hema-
topoietic ontogeny, further supporting a mitotic clock 
interpretation (Figure 2) [31–32,86–88].

DNAm-based predictors of cancer risk
Several studies have explored the possibility of using 
DNAm signatures in easily accessible nonepithelial tis-
sues such as blood to predict the prospective risk of 
epithelial cancer. For instance, a number of studies 
have shown that the prospective risk of breast cancer 
can be predicted from whole blood DNAm profiles, 
yet the resulting AUCs or odd ratios are low (AUCs 
typically between 0.5 and 0.65), and therefore, only 
of marginal significance  [66,89–91]. As mentioned ear-
lier, DNAm-age in blood has also been shown to be 
predictive of lung cancer with a cancer incidence haz-

ard ratio of 1.5 (p = 0.003)  [56]. Focusing on a small 
set of inflammatory genes, which included IL6, IFN, 
TLR2 and ICAM1, another recent study has shown 
how DNAm of these genes in blood could predict the 
prospective risk of prostate cancer with an incidence 
hazard ratio of approximately 1.5 [92]. Using four lon-
gitudinal cohorts, it has also been shown that DNAm-
age in blood predicts all-cause mortality in later life, 
with age accelerations of 5 years or higher carrying a 
16% increased mortality risk [57]. However, the influ-
ence of cancer-related mortality relative to mortality 
caused by other diseases in the context of DNAm-age 
needs to be more carefully assessed.

Other studies have shown how DNAm signatures 
derived in epithelial cells can predict the risk of neopla-
sia or invasive cancer. For instance, one study showed 
how DNAm variability in cytologically normal cervical 
smears, collected 3 years in advance of diagnosis, could 
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Figure 2. Epigenetic stem cell model of oncogenesis. Figure depicts how age-associated DNA methylation changes, which 
preferentially target genes marked by the PRC2 complex, accrue in underlying stem cells as a function of both age and exposure to 
cancer risk factors, leading at first to intrasample epigenetic nonclonal heterogeneity. Subsequent additional epigenetic and genetic 
changes can then give rise to epigenetic clonal mosaicism, from which subsequently a cancer clone can arise. The rate at which DNAm 
changes accrue at PRC2 targets will be determined by an epigenetic mitotic clock, with the rate influenced by endogenous and 
exogenous risk factors (see Figure 1).
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predict the prospective risk of a cervical intraepithelial 
neoplasia of grade 2 or higher, with an AUC of approxi-
mately 0.66 (p < 0.05) [58]. Another study showed how 
a smoking DNAm signature, as derived in buccal cells, 

and assessed in lung carcinomas in situ could predict 
the risk of progression to invasive lung cancer with an 
AUC of 0.88  [62]. While all of these results offer the 
exciting prospect of using DNAm in easily accessible 
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tissues to predict cancer, larger studies will be needed to 
assess the potential for clinical application.

Epigenetic drift: is it functional & causal?
DNAm changes that correlate with age and other 
cancer risk factors and which can predict prospective 
cancer risk offer great biomarker potential. However, 
whether these associations are purely correlative or 
causative is still unclear. In the context of aging, age-
associated DNAm changes may contribute to the well-
known age-associated decline of stem cell function, 
and may underlie phenomena such as the well-known 
myeloid skewing of an aged hematopoietic system [93,94] 
and immunosenescence [95]. However, with the excep-
tion of a few genes, it has been extremely difficult to 
pinpoint age-associated alterations in gene expression 
or gene function, which are due to corresponding 
alterations at the DNAm level. Indeed, although there 
have been some reports of correlations between DNAm 
and mRNA expression in blood  [34,96], the studies 
were either small  [96] or did not use matched samples 
or did not correct for changes in blood cell-type com-
position  [34]. Using two large but unmatched blood 
DNAm and mRNA expression datasets, and correcting 
for cellular heterogeneity, a recent study showed that 
one reason why there might not be a strong correla-
tion is because age-associated DNAm changes appear 
to act by stabilizing pre-existing ‘baseline’ expression 
levels  [97]. Thus, age-associated hypermethylation in 
blood is preferentially observed in promoters of genes 
that are normally not expressed in blood, and vice-versa, 
hypomethylation is observed in promoters of genes that 
are normally expressed  [97]. Thus, if this result was 
to generalize to other tissue types, this suggests that 
most of the epigenetic drift is probably not functional. 
Given that epigenetic drift might already begin during 
embryogenesis  [17,98] and that the rate of drift appears 
to be maximal before sexual maturity [99,100], one could 
speculate that most of the drift ought to be passive, as 
otherwise, it would bring forward the onset of complex 
diseases to coincide with the reproductive period, which 
would be highly undesirable and probably not selected 
for on evolutionary grounds [19]. Consistent with this, 
epigenetic drift also appears to target mostly peripheral 
nodes in protein interaction networks, avoiding essen-
tial and housekeeping genes, and specifically targeting 
transcription factors, most of which are not expressed 
in any given tissue type [101].

Thus, it is tantalizing to speculate that epigenetic 
drift generally does not affect gene function, but that 
it may occasionally ‘hit’ a key transcription factor, for 
instance, one that is critical for maintaining healthy 
homeostasis of a given tissue type, thus increasing 
cancer risk  [94,102]. Recent work in the hematopoietic 

system supports this model, where DNAm alterations 
that are seen to accrue with age in blood and which 
may affect key lineage-specifying transcription factors, 
appear aggravated in myelodysplastic syndrome, with 
further increases in DNAm observed in acute myeloid 
leukemias  [94]. Genetic mutations in key epigenetic 
regulators, which are seen as a function of age in pre-
leukemic clonal expansions, and which can modify the 
normal DNAm landscape, provide further indirect 
support for such a model [103,104]. The WNT-signaling 
pathway, a key stem cell pathway, which is observed 
to undergo epigenetic deregulation with age [29,105–106], 
with DNAm-induced silencing of WNT-signaling 
antagonists potentially tipping the homeostatic bal-
ance toward increased self-renewal  [106], provides 
further evidence for how drift could affect normal 
homeostasis.

Another more concrete example of how drift could 
increase cancer risk, and which may serve as a gen-
eral paradigm for several other cancer types, is the 
one provided by HAND2 in endometrial cancer  [107]. 
Although the promoter of HAND2 has not yet been 
conclusively shown to undergo hypermethylation 
with age in endometrial tissue, it does undergo hyper-
methylation with age in both blood  [94,97] and in the 
colon of mice  [24], suggesting that hypermethylation 
of its promoter with age is a tissue-wide phenomenon. 
This is significant, not only because age is a main risk 
factor for endometrial cancer, but because HAND2 
plays a critical role in mediating the tumor suppres-
sive effects of progesterone, the main tumor suppres-
sor pathway in this cancer type. In fact, a high body 
mass index, which is usually associated with a high 
estrogen to progesterone ratio, is the other main risk 
factor for endometrial cancer, and HAND2 antago-
nizes the oncogenic activity of estrogen  [107]. Given 
that promoter hypermethylation-induced silencing of 
HAND2 is observed in normal tissue adjacent to com-
plex atypical hyperplasias (CAH), in CAH itself, and 
in endometrial cancer [107], this supports the view that 
HAND2 methylation is an early progressive event in 
endometrial carcinogenesis. Moreover, HAND2 dou-
ble knock-out mice develop CAH within weeks  [107], 
suggesting that HAND2 inactivation is a causal driver 
of endometrial cancer development. Thus, although 
HAND2 promoter hypermethylation with age may be 
observed in many different tissue types, it is only the 
silencing in endometrial tissue that would be of par-
ticular functional consequence, increasing the risk of 
neoplastic transformation in that tissue.

Conclusion & future perspective
A deeper understanding of epigenetic drift, defined 
here as any age-associated DNAm alteration, will 
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require an improved characterization of its underlying 
components. As proposed here, epigenetic drift has at 
least three major components (Figure 1): a cell-intrinsic 
and tissue-type independent component, which allows 
highly accurate quantification of chronological age, 
as exemplified by Horvath’s epigenetic clock; another 
cell-intrinsic, mitotic component whose tick rate will 
be tissue-dependent and influenced by endogenous 
(e.g.,  genetic risk factors) and exogenous (e.g.,  endo-
crine factors, inflammation) factors; and a cell-extrin-
sic, nonmitotic, active component, which will largely 
depend on tissue-type, and which also captures the 
age-cumulative effects of endogenous and exogenous 
risk factors.

Future studies will need to address a number of key 
questions to help shed further light on the nature of 
epigenetic drift and its components. Focusing on the 
epigenetic clock, it will be interesting to determine if 
other equally accurate clocks can be constructed and 
whether there is a minimum number of CpGs that are 
required to achieve such accuracy. Given that Hor-
vath’s clock is largely based on Illumina 27k probes, 
it would be interesting to see if more accurate clocks 
can be constructed based on the newer 450k/EPIC 
and eventually also whole genome bisulfite sequencing 
technologies. The degree of stochasticity in the epigen-
etic clock also needs to be assessed, for instance, by 
comparison of DNAm patterns at the 353 clock sites 
between different tissues (e.g., buccal and blood) from 
the same individual. Using longitudinal studies with 
multiple time points may also shed light on the tempo-
ral nature of DNAm changes at these specific sites [108]. 
The underlying biological mechanism underpinning 
Horvath’s clock is another outstanding question, spe-
cially given that it does not seem to represent a mitotic 
clock. In particular, it will be of interest to explore 
if the 353 CpG sites making up Horvath’s clock are 
located in special chromatin states, which are largely 
independent of tissue type.

Another key task for the future is the dissection 
of age-associated DNAm changes into those that are 
intrinsic to the aging process itself and those which 
reflect a cumulative exposure to environmental and 
lifestyle factors. To do this on human cohorts is an 
entirely nontrivial proposition, since properly adjusting 
for environmental and lifestyle factors is hard, specially 
given that we are still unaware of all factors that may 
impact on the epigenome and how this may vary across 
tissue types. Birth cohorts could help adjust for chron-
ological age and thus help identify DNAm alterations, 
which are specific to environmental exposures  [109]. 
Longitudinal studies profiling multiple tissues at mul-
tiple time points will be illuminating, in particular 
those based on twins [110]. An alternative approach to 

help identify DNAm alterations, which are intrinsic to 
aging, would be to perform studies on isogenic mice, 
where all mice are treated uniformly and kept under 
identical environmental conditions. It would be inter-
esting to see if and how such changes vary according to 
tissue type, even within the same mice, and whether an 
analogous epigenetic clock for mice can be found. Sim-
ilarly, the effect of a controlled environmental expo-
sure on an isogenic mouse population could be stud-
ied to determine which factors accelerate or decelerate 
DNAm-age [111].

Of particular importance for cancer, is the com-
ponent of epigenetic drift, which represents tissue-
specific mitotic clocks, measuring the number of stem 
cell divisions in the tissue. As shown by Tomasetti and 
Vogelstein in the context of genetic mutations, such a 
mitotic clock may serve to predict the life-time risk of 
a given tissue-type turning cancerous  [112,113]. Such a 
mitotic clock would accelerate in response to specific 
cancer risk factors, inflammation and endocrine fac-
tors being a few clear candidates  [73–74,80,114–115], and 
thus may help explain the interindividual variation in 
cancer risk of a given tissue-type [15,59]. As argued ear-
lier, PRC2 promoter sites may be particularly prone to 
acquisition of methylation marks during DNA repli-
cation, and consistent with this, hypermethylation of 
PRC2 sites appears to represent a universal DNAm 
signature of aging, preneoplastic lesions and cancer 
(Figure 2)  [25]. Although an explicit link between an 
epigenetic mitotic clock and cancer risk still needs 
to be demonstrated, we have already seen that spe-
cific age and nonage related PRC2-enriched DNAm 
signatures in relevant epithelial cell types can predict 
the risk of certain cancers, including that of the cer-
vix and lung. Therefore, we here propose that mitotic 
PRC2-enriched DNAm clocks, which correlate with 
the level of exposure to a generic cancer risk factor 
such as inflammation  [73,74], may be particularly use-
ful in the context of risk prediction or early detection 
(Figure 1 & 2). It follows from this that Horvath’s epi-
genetic clock, which is not a mitotic clock, may not 
be that relevant for predicting the risk of a disease 
like cancer, which is universally characterized by an 
increased cell proliferation rate. Indeed, a highly opti-
mized multitissue age predictor like Horvath’s clock, 
which was trained over many tissue types with highly 
different mitotic rates, cannot be that informative of 
cancer risk, because it would not be able to capture the 
mitotic effects (e.g.,  inflammation, hormonal factors) 
that promote neoplastic transformation (Figure 1).

Apart from the silencing of key tissue-specific tran-
scription factors, another related mechanism, which 
could link a mitotic PRC2-enriched DNAm clock to 
cancer risk, is through an increase in intrasample epi-



10.2217/epi-2015-0017 Epigenomics (Epub ahead of print) future science group

Review    Zheng, Widschwendter & Teschendorff

genetic mosaicism (Figure 2). Increased intrasample 
stochastic epigenetic variation could provide the very 
early seeds for carcinogenesis, facilitating the emer-
gence of clonal expansions, which eventually lead 
to neoplastic transformation and cancer  [73,116–121] 
(Figure 2). Indeed, recent studies have already shown 
that epigenetic clonal heterogeneity may play a key role 
in increasing the risk of neoplastic transformation [122] 
and in determining clinical outcome  [123,124]. Thus, 
measures of intrasample clonal epigenetic heterogene-
ity may represent excellent general cancer biomarkers 
for early detection or risk prediction. It will, therefore, 
also be important to assess the relative level of stochas-
tic versus nonstochastic epigenetic variation, which 
results from mitotic clocks operating at the stem cell 
level [10].

In relation to studies reporting DNAm signatures 
that predict the prospective risk of an epithelial cancer 
(including those which used the epigenetic clock), it is 
important to note that in most cases the predictions 
were obtained in a cell type (e.g., blood), which does 
not serve as the cell of origin for the cancer. Therefore, 
there is an urgent need to provide a mechanistic basis 
for these associations. One possibility is that DNAm 
changes in blood may represent an immune system 
defect, which could predispose individuals to the 
development of epithelial tumors like lung cancer [125]. 
Another possibility is that subtle alterations in blood 
tissue composition could be signaling an early response 
to the presence of preneoplastic cells in epithelial tis-
sues. Such shifts in blood composition are certainly 
seen in patients with epithelial cancers [86,126], but how 
early in carcinogenesis such shifts might be detect-
able is currently unclear. Curiously, most cancer-risk 
predictive DNAm signatures in blood have not been 
consistently linked to immune-system related path-
ways [56,66,89–90], suggesting that there may be another 
basis for the observed associations. One appealing 
and exciting possibility is that DNAm changes asso-
ciated with an exposure could be similar in different 
normal tissue types. That this may be so is supported 
by a study demonstrating that smoking induces simi-
lar DNAm alterations in buccal and blood tissue, 
although, as expected, the effect of smoking is far 
stronger in the cells directly exposed to the carcinogen 
(i.e., the buccals) [62]. For instance, the AHRR gene is 
similarly affected in both blood and buccal tissue [62], 
supporting the view that the observed hypomethyl-
ation at this gene locus represents an active response 
to the smoke carcinogen, a response which would be 
common across affected tissues. Likewise, age-associ-
ated DNAm signatures are generally valid across many 
different tissue types. HPV infection also seems to be 
associated with very similar DNAm changes in cervi-

cal and head and neck cancer  [127]. It will, therefore, 
be extremely important to determine how DNAm 
changes associated with exposures vary according to 
tissue type. It will be equally important to assess which 
endogenous (e.g., genetic risk factors) and exogenous 
(exposure-related) factors cause similar and dissimilar 
DNAm changes in any given normal tissue type. For 
a given cancer type, these questions are key in order to 
then decide which easily accessible normal tissue might 
be suitable (if any) as a surrogate for developing risk 
prediction or early detection biomarkers.

The functional significance of epigenetic drift also 
needs further in-depth study. The lack of wide-spread 
in-cis associations between age-associated DNAm 
and mRNA expression changes does not mean that 
there might not be a more intricate in-trans associa-
tion. Indeed, besides PRC2 members, binding sites 
of other key transcription factors like CTCF or those 
of the repressor NRSF/REST, become preferentially 
hypermethylated with age [97], strongly suggesting that 
specific regulatory networks, which support a certain 
3D chromatin architecture, may become disrupted 
with age  [128]. Thus, it will be specially interesting to 
investigate the patterns of epigenetic drift in relation 
to distal regulatory elements, including enhancers, as 
this may shed further light on how drift may impact 
on homeostasis in aged tissue, or to investigate the pat-
terns of epigenetic drift in a multilayer setting, which 
also includes all major histone marks [129].

Finally, it will be important to see if there are other 
examples like HAND2 in endometrial cancer. As we 
have seen, this gene undergoes age-associated hyper-
methylation in normal tissue, and inactivation appears 
to be also a causal driver of early endometrial cancer 
development. The example of HAND2 is particularly 
enlightening, because HAND2 methylation in endo-
metrial tissue links together the two main epidemi-
ological risk factors for endometrial cancer: age and 
obesity. We propose that this example may also serve 
as a more general paradigm linking age-associated 
DNAm-induced alterations in transcription factor 
activity to a modulation of the response to an exog-
enous cancer risk factor (in this case high estrogen lev-
els), and therefore, to an increased cancer risk.
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Executive summary

•	 DNA methylation (DNAm) drift in normal tissue reflects cell intrinsic and extrinsic mechanisms, some of which 
are tissue-independent, whereas others are tissue specific.

•	 The epigenetic clock describes cell-intrinsic age-associated DNAm alterations, which are tissue and cell-type 
independent, and which allows highly accurate prediction of the chronological age.

•	 Most of the epigenetic drift is nonfunctional, yet some of the drift may eventually affect the expression or 
binding affinity of transcription factors that are required for normal homeostasis.

•	 Epigenetic PRC2-enriched mitotic clock(s), which measure the cumulative rate of stem cell divisions in a tissue, 
and whose clock-rate may be affected by endogenous and exogenous factors, are of likely relevance for 
cancer-risk prediction.

•	 DNAm signatures associated with cancer risk factors and derived in easily accessible tissues such as blood and 
buccal tissue have been correlated with the prospective risk of epithelial neoplasia and invasive cancers.
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