
DNA methylation (DNAm) refers to the covalent attach‑
ment of a methyl (CH3) group to DNA bases, which for 
eukaryotes is usually 5‑methylcytosine (5mC) in the 
context of cytosine–guanine dinucleotides (CpGs). Like 
other epigenetic modifications, DNAm is mitotically 
heritable and plays a key role in embryonic development 
and regulation of gene expression1. As such, DNAm is 
highly cell-type-specific. DNAm is also influenced 
by genotype and can be altered by exposure to exter‑
nal factors, such as smoking and diet2–6. Like somatic 
mutations, DNAm changes accrue with age4,7,8 and are 
thought to mediate the effects of environmental risk fac‑
tors on disease incidence and to contribute to disease 
progression and treatment resistance9,10. Irrespective of 
their potential causal role, DNAm-based biomarkers 
offer great promise for risk prediction, early detection 
and prognosis9. Their discovery is facilitated by technol‑
ogies that allow genome-wide measurement of DNAm 
in a high-throughput manner11. Importantly, the meta
stability of DNAm and the DNA-based nature of the 
assays provide important technical advantages over 
measuring histone modifications or mRNA expression. 
In particular, DNAm assays based on bisulfite conversion 
are highly quantitative and reproducible, offering high 
sensitivity to detect small (~1%) changes in DNAm 
from samples with limited amounts of available DNA. 
Among these, the Illumina BeadChip microarray tech‑
nology12,13 offers a good compromise between cost 
and coverage and is so far the most popular choice for 
epigenome-wide association studies (EWAS), which require 
DNAm measurements in hundreds if not thousands of 
samples13. By contrast, the higher coverage and cost 
of whole-genome bisulfite sequencing (WGBS) and 
reduced-representation bisulfite sequencing (RRBS) 
make these the optimal technologies for mapping 

reference DNA methylomes, as generated by inter‑
national consortia such as the US National Institutes 
of Health (NIH) Roadmap Epigenomics Project, the 
International Human Epigenome Consortium (IHEC) 
and BLUEPRINT14,15, or for measuring genome-wide 
DNAm patterns from low-yield DNA samples such as 
cell-free DNA (cfDNA) in plasma16.

Rigorous and reliable inference from DNAm data 
is key to a wide range of downstream tasks in EWAS, 
including the identification of disease biomarkers and 
causal relationships. These tasks require careful statistical 
analyses, starting with quality control steps that assess the 
reliability of the data, followed by intra-sample normalization 
to adjust for sample-specific technical biases (for example, 
incomplete bisulfite conversion and background correc‑
tion). Beyond the obvious importance and need for such 
normalization, downstream statistical analyses need to 
deal with other challenges, notably including batch effects 
and other confounding factors, feature selection and integra‑
tion with other types of omic data. Given that DNAm is 
highly cell-type-specific, cell-type heterogeneity of com‑
plex tissues (for example, blood or breast) constitutes a 
major confounder, requiring the application of cell-type 
deconvolution algorithms. These algorithms offer a form 
of in silico or virtual microdissection, allowing inference 
of DNAm changes that are not driven by alterations 
in tissue composition. Other DNAm alterations have 
been found to be reproducibly associated with differ‑
ent environmental factors (for example, smoking and  
obesity)17–19, which can also cause confounding in EWAS. 
Reverse causation also poses challenges, as observed in 
the case of the relationship between obesity and DNA 
methylation, where the prevailing evidence points to the 
phenotype of interest altering DNAm rather than vice 
versa18,20. The interpretability of an EWAS is also limited 
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Bisulfite conversion
A technique in which DNA is 
treated with bisulfite, resulting 
in modification (upon 
amplification) of unmethylated 
cytosines into thymines, 
whereas methylated cytosines 
are protected from 
modification.
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Abstract | Epigenetics plays a key role in cellular development and function. Alterations to the 
epigenome are thought to capture and mediate the effects of genetic and environmental risk 
factors on complex disease. Currently, DNA methylation is the only epigenetic mark that can be 
measured reliably and genome-wide in large numbers of samples. This Review discusses some of 
the key statistical challenges and algorithms associated with drawing inferences from DNA 
methylation data, including cell-type heterogeneity, feature selection, reverse causation and 
system-level analyses that require integration with other data types such as gene expression, 
genotype, transcription factor binding and other epigenetic information.
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Epigenome-wide-association 
studies
(EWAS). A study design that 
seeks associations between 
DNA methylation at many sites 
across the genome and an 
exposure, trait or disease of 
interest.

Intra-sample normalization
The procedure of adjusting the 
raw data profile of a biological 
sample for technical biases and 
artefacts. This is often followed 
by inter-sample normalization, 
in which adjustments are made 
to the data for technical and 
biological factors that 
otherwise cause unwanted 
(and often confounding) data 
variation across samples.

Confounding
When the relationship between 
an exposure and an outcome is 
not causal but is due to the 
effects of a third variable (the 
confounder) on the exposure 
and the outcome. White blood 
cell heterogeneity can act as a 
confounder in many epigenetic 
studies.

Feature selection
The statistical procedure of 
identifying features which, in 
some broad sense, correlate 
with an exposure or phenotype 
of interest (POI).

Differentially methylated 
cytosines
(DMCs). Cytosines (usually in a 
CpG context) that exhibit a 
statistically significant 
difference in DNA methylation 
between two groups of 
samples, according to some 
statistical test.

Condition number
In the context of 
reference-based cell-type 
deconvolution, the condition 
number of a reference matrix 
represents an index of the 
numerical stability of the 
inference. Formally, it measures 
the sensitivity of the regression 
parameters (also known as cell 
weights) to small perturbations 
or errors in the reference matrix.

by DNAm being an imperfect measure of gene activ‑
ity, thus requiring integration with other types of data  
(for example, mRNA expression or chromatin immuno
precipitation followed by sequencing (ChIP–seq)) in 
order to help improve causal inference and interpretation. 
Although statistical methods for such integrative analyses 
are underdeveloped, the technical reliability of DNAm 
measurements makes DNAm the ideal epigenetic focal 
point for such system-level analyses.

Here, we discuss the aforementioned statistical 
challenges and review the corresponding compu
tational algorithms and software, focusing throughout 
on downstream analyses, that is, after intra-sample 
normalization. We first consider confounding factors, 
owing to the need to determine the major sources of 
inter-sample variation, with an emphasis on cellular 
heterogeneity and cell-type deconvolution algorithms. 
Next, we turn to the main task of an EWAS, which is 
feature selection. To help with the interpretation of 
EWAS data, we subsequently describe methods for 
integrating DNAm with other types of omic data, such 
as genotype, mRNA expression and transcription factor 
(TF) binding data, including approaches to strengthen 
causal inference. We end with an outlook on outstand‑
ing statistical challenges and a prediction of how the 
field will develop. Details of technologies for generating 
DNAm data and associated intra-sample normalization 
methods are not covered here, as they were recently 
reviewed elsewhere21–24.

Cell-type heterogeneity and deconvolution
EWAS seek to identify differentially methylated cytosines 
(DMCs) between cases and controls. This task is ham‑
pered by variations in the proportions of cell types that 
make up the tissue where DNAm is measured. These 
proportions may vary substantially between cases and 
controls, and while this variation may be biologically 
and clinically important25,26, they often reflect changes 
that are consequential of the disease state, hampering 
the identification of alterations that may drive disease 
risk or progression27–29. For example, rheumatoid arthri‑
tis (RA) was shown to be associated with a shift in the 
granulocyte-to‑lymphocyte ratio, leading to thousands 
of DMCs, most of which disappeared upon correction 
for cell-type composition30.

In general, cell-type deconvolution methods are 
needed to address any of the following four aims: esti‑
mation of absolute or relative cell-type fractions within 
the samples of interest; identification of DMCs that are 
not the result of changes in cell-type composition; iden‑
tification of DNAm profiles representing cell types in 
the tissue of interest; and identification of the cell type 
(or types) carrying the DMCs. Broadly speaking, statis
tical paradigms for cell-type deconvolution fall into 
two main categories, called ‘reference-based’ (REF. 31) 
(if it uses a priori defined DNAm reference profiles 
of representative cell types in the tissue of interest) 
and ‘reference-free’ (REF. 32) (BOX 1). Other work has  
developed a third paradigm (‘semi-reference-free’)33,34, 
which circumvents some of the disadvantages of both 
reference-free and reference-based methods (BOX 1).

Reference-based cell-type deconvolution. The main 
requirements underlying reference-based inference 
are that the main constituent cell types of the tissue 
are known and that reference molecular profiles repre‑
senting these cell types are available. Importantly, the 
reference profiles need to be defined only over features 
that are informative of differences between cell types; 
for example, in the DNAm context, they should ideally 
represent cell-type-specific DNAm markers or be highly 
discriminative of the different cell subtypes in the tissue 
of interest. The construction of such reference profiles 
usually needs to be completed in advance of the study, 
and it typically requires the generation of genome-wide 
DNAm data of cell populations purified by fluorescence-
activated cell sorting (FACS) or magnetic-activated cell 
sorting (MACS), followed by statistical analysis to select 
DMCs between cell subtypes. The importance of con‑
structing a high-quality reference profile database has 
recently been highlighted35. For instance, similar cell 
types are likely to have highly collinear profiles, which 
may result in unstable parameter estimation36. This is 
of particular concern if quality control causes a rela‑
tively large number of CpGs present in the reference 
database to drop out, which may further aggravate the 
collinearity. Hence, it has been proposed that a refer‑
ence database should maximize the condition number of 
the matrix it defines37, which in effect ensures maximal 
stability of the inference to random loss of features in the 
reference database.

Assuming a reference database exists, there are then 
two approaches to infer cell-type fractions within a 
sample of interest. Both methods effectively run a multi
variate regression of the DNAm profile of the sample 
against the reference DNAm profiles as covariates, 
with the estimated regression coefficients correspond‑
ing to cell-type fractions (if appropriately normalized) 
(FIG. 1Aa). A widely known technique named constrained 
projection (CP) (also called quadratic programming 
(QP)) performs least-squares multivariate regression 
while imposing normalization constraints on the regres‑
sion coefficients, which allows the estimated coefficients 
to be directly interpreted as cell-type proportions 
within the sample31,38. An alternative ‘non-constrained’ 
approach is to impose the non-negativity and normali‑
zation constraints after estimation of the regression co
efficients. This is the approach taken by CIBERSORT, 
which implements a penalized multivariate regression, 
originally presented in the context of gene expression 
data37. A similar non-constrained approach can be taken 
with robust partial correlation (RPC) (a robust form 
of multivariate regression)37,39. A recent comparative 
DNAm study of CP, CIBERSORT and RPC concluded 
that for realistic noise levels, RPC and CIBERSORT 
might be preferable over CP39, consistent with findings 
obtained for gene expression data37.

Methods such as CP or CIBERSORT use reference 
DNAm profiles defined as the average DNAm over 
biological replicates, using DMCs that maximize the 
differences in mean methylation between cell types. 
Ideally, these DMCs would also exhibit very stable 
(that is, ultra-low variance) DNAm profiles within 
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cell types, appearing as strongly bi‑modal profiles. 
However, depending on the tissue and cell types, such 
bi‑modal DMCs may not be present, so it may also be 
necessary to include the variance in DNAm when per‑
forming reference-based deconvolution. For instance, 
an algorithm called CancerLocator models reference 
DNAm profiles using beta distributions, generating beta-
distribution references for healthy plasma DNA and 
solid tumours, subsequently using a two‑state beta-
mixture model to infer tumour burden and tissue of 
origin of circulating tumour DNA (ctDNA) in plasma40 
(FIG. 1Ab). Similarly, algorithms for inferring tumour 
purity of primary cancers also use explicit beta distri‑
butions and have been shown to provide accurate esti‑
mates, in line with gold-standard estimates derived from 
copy-number data41–43.

Reference-free cell-type deconvolution. To date, there 
are two main types of reference-free methods (BOX 1), 
which differ greatly in terms of their model assump‑
tions. One class is widely known as surrogate variable 
analysis (SVA)44–46, an approach developed originally 
to address general unknown confounding factors and 
that has also gained considerable favour for cell-type de
convolution47–49. SVA uses the phenotype of interest (POI) 
from the outset and attempts to construct ‘surrogate var‑
iables’ that capture confounding variation of any sort 
(that is, not just cell-type compositional changes but, 
for example, also batch effects) in the space of variation 
that is ‘orthogonal’ to that associated with the POI44,45,50. 
A variant of SVA, called RefFreeEWAS32, assumes an 
explicit mixture-modelling structure (as required for 
modelling cell-type composition) and has been demon‑
strated to work well32,51. Another variant of SVA, called 
independent surrogate variable analysis (ISVA)50, is sim‑
ilar to SVA but uses a blind source separation (BSS) algo‑
rithm (independent component analysis (ICA)52) instead 
of principal component analysis (PCA) in the residual var‑
iation space, which may help to identify a more relevant 
subspace of confounding variation (that is, a subset of 
surrogate variables). The need for this subspace selection 
step may arise if the model describing the effect of the 
POI on the data is a poor one, as this may result in vari‑
ation associated with the POI being found in the surro
gate variable subspace50. Unlike PCA, BSS is designed 
to disentangle independent sources of variation52 and is 
therefore better suited for deconvolving the residual bio‑
logical variation associated with the POI from potential 
confounding variation.

Another set of reference-free approaches, exempli‑
fied by methods such as EWASher53 or ReFACTor54, do 
not use the phenotype of interest when inferring latent 
components associated with cell-type composition. 
This is only possible if certain assumptions are made. 
Specifically, EWASher and ReFACTor assume that the 
top principal component of variation in the data is 
associated with changes in cell-type composition, an 
assumption that will not hold if the POI accounts for 
a larger proportion of data variance. Thus, the applic
ability of these two methods is critically dependent 
on the POI and the underlying tissue type (FIG. 1B).  

Box 1 | Statistical inference paradigms for cell-type deconvolution

Reference-based cell-type deconvolution tools
These methods correct for cell-type heterogeneity by using an existing reference DNA 
methylation (DNAm) database of cell types that are thought to be present in the tissue 
of interest. If the main underlying cell types of the tissue are known, then estimates of 
the absolute cell-type fractions are possible; otherwise, estimated fractions are relative. 
The estimated absolute or relative cell-type fractions can then be used as covariates in 
supervised multivariate regression models to infer differentially methylated cytosines 
(DMCs) that are independent of changes in cell-type composition.

Advantages

•	Absolute or relative cell-type fractions can be estimated in each individual sample.

•	If required, they can be easily combined with batch-correction methods such as COMBAT.

•	The model itself is relatively assumption free.

Disadvantages

•	The tools require knowledge of the main cell types that are present in the tissue. 
Reliable reference DNAm profiles must be available for these cell types.

•	On their own, they cannot deal with unknown confounding factors.

•	They assume that cell–cell interactions in the sample do not affect the DNAm profiles 
of the individual cell types.

•	Reference profiles could be confounded by factors such as age or genotype.

Reference-free cell-type deconvolution tools
These methods correct for cell-type heterogeneity by inferring from the full data matrix 
‘surrogate variables’, which include sources of data variation that are driven by 
cell-type composition. These surrogate variables are inferred from the data without the 
need for a reference DNAm database and are used as covariates in the final supervised 
multivariate regression model to infer DMCs that are independent of changes in 
cell-type composition and other cofounders.

Advantages

•	There is no requirement to know the main cell types in a tissue or to have reference 
DNAm profiles; hence, in principle, they are applicable to any tissue type.

•	De novo (unsupervised) discovery of novel cell subtypes.

•	They allow for the possibility that cell–cell interactions alter the profiles of individual 
cell types.

•	They can adjust simultaneously for other confounding factors, known or unknown.

Disadvantages

•	Without further biological input, they cannot provide estimates of cell-type fractions 
in individual samples.

•	Performance is strongly dependent on model assumptions, which are often not satisfied.

Semi-reference-free cell-type deconvolution tools
This is a third paradigm that corrects for cell-type heterogeneity by inferring surrogate 
variables representing variation due to cell-type composition but that, unlike a purely 
‘reference-free’ approach, does so by using partial prior biological knowledge of which 
cytosine–guanine dinucleotides (CpGs) differ between cell types. Typically, these tools 
infer the surrogate variables from the reduced data matrix, projected on this set of 
selected features.

Advantages

•	They allow for the possibility that cell–cell interactions alter the DNAm profiles of 
individual cell types.

•	If required, they can be combined with batch-correction methods such as COMBAT.

•	They are more robust to incomplete knowledge of underlying cell types in the tissue 
of interest.

•	They can provide approximate relative estimates of cell-type fractions in individual 
samples.

Disadvantages

•	Performance is still strongly dependent on model assumptions, which may not be 
satisfied.

•	Inference of absolute cell-type fractions in individual samples remains challenging.

•	The ability to resolve highly similar cell types is limited.
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B  Choosing a cell-type adjustment algorithm for DMC detection

a  Complex tissue (e.g. whole blood or breast)

b Infering tumour burden and tissue of origin from cell-free
     DNA in plasma
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Figure 1 | DNA methylation analysis of cell-type heterogeneity. 
Aa | Estimating cell-type fractions in a sample for which a genome-wide DNA 
methylation (DNAm) profile is available is an important task, as changes in these 
proportions can have biological and clinical importance or can confound 
analyses. Constrained projection (CP) infers these proportions by running a 
constrained multivariate regression model of the sample’s DNAm profile against 
reference DNAm profiles for the cell types of interest, with the estimated 
regression coefficients (w1, w2 and w3) representing cell proportions. Ab | From 
a plasma sample, estimating the relative fractions of cell-free DNA (cfDNA) from 
healthy cells versus circulating tumour DNA (ctDNA) presents a novel promising 
clinical application for non-invasive early detection and disease monitoring. The 
CancerLocator algorithm (TABLE 1) allows estimation of the tumour burden 
(denoted f) and the type of tumour. B | Cell-type heterogeneity may cause 
confounding and compromise the identification of differentially methylated 
cytosines (DMCs) in epigenome-wide association studies (EWAS). The diagram 
presents recommendations as to which statistical algorithms might be better 
suited for different EWAS scenarios. This depends on whether reference DNAm 
profiles are available, the presence of unknown confounders and technical 
batch effects (known confounders). When reference profiles are available, 
reference-based methods are recommended unless there is evidence of other 
confounding variation, in which case surrogate variable analysis (SVA)-like 

methods are preferable. If partial prior information is available, such as if 
cell-type-specific DMCs (tDMCs) are known but no reference profiles are 
available, a semi-reference-free approach like RefFreeCellMix is recommended. 
Relative data variation between the phenotype of interest (POI) and that due 
to cell-type heterogeneity is important when deciding between reference-free 
methods. Finally, DMCs are inferred using a multivariate regression of the data 
against the POI (F denotes the link function) and cell-type fractions or surrogate 
variables as covariates (denoted Q). Note that regression coefficients have been 
omitted for the sake of clarity. C | A third important task is the quantification of 
epigenetic heterogeneity within a given cell type, for instance, quantifying 
clonal heterogeneity within tumour cells. Given that DNAm normally exhibits 
strong spatial correlations on scales up to approximately 500 bp and that 
tumours are characterized by widespread deviations from the DNAm ground 
state, one way to approximate clonal epigenetic heterogeneity is to measure 
the proportion of discordant reads (PDR). Tumours characterized by high 
epigenetic clonal heterogeneity have been found to exhibit worse clinical 
outcome (see the main text). For specific algorithms mentioned in this figure, 
see TABLE 1. CpG, cytosine–guanine dinucleotide; CR, concordant reads; DR, 
discordant reads; PBMC, peripheral blood mononuclear cells; RPC, robust 
partial correlations; RRBS, reduced-representation bisulfite sequencing; RUV, 
removing unwanted variation; WGBS, whole-genome bisulfite sequencing.
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Constrained projection
(CP). Also known as quadratic 
programming (QP). A widely 
used technique for performing 
multivariate linear regression 
with constraints (such as 
non-negativity and 
normalization) imposed on the 
regression coefficients. In the 
context of cell-type 
deconvolution, the coefficients 
correspond to cell-type 
proportions in a sample. By 
definition, these proportions 
are non-negative, and their 
sum must be ≤1.

Beta distributions
The distributions of beta 
values. The beta value is a 
statistical term used to 
describe the quantification of 
DNA methylation at a given 
cytosine, as the ratio of 
methylated alleles to the total 
number of alleles 
(methylated + unmethylated), 
a number that by definition 
must lie between 0 (fully 
unmethylated) and 1 (fully 
methylated).

Surrogate variable analysis
(SVA). A widely used technique 
for selecting features 
associated with a factor of 
interest, which is not 
confounded by other factors. 
SVA uses a model to identify 
the data variation that is 
orthogonal to the factor of 
interest and subsequently uses 
principal component analysis 
(PCA) on this orthogonal 
variation matrix to construct 
‘surrogate variables’, which in 
theory should capture 
confounding sources of 
variation.

Phenotype of interest
(POI). The factor or variable of 
interest in an epigenome-wide 
association study (EWAS). This 
factor is often binary, 
representing case–control 
status, but could also represent 
an ordinal variable (for 
example, genotype) or be 
continuous (for example, age).

Blind source separation
(BSS). The problem of inferring 
the sources of variation gives 
rise to a data matrix without 
using any prior information 
(‘blind’). Algorithms that can 
achieve this are called BSS 
algorithms, of which 
independent component 
analysis (ICA) is one example.

For instance, the assumption underlying EWASher and 
ReFACTor may hold in whole blood for a wide range 
of phenotypes because the granulocyte fraction varies 
substantially, even among healthy individuals (see, for 
example, REF. 39), yet in a less complex tissue such as 
peripheral blood, which is devoid of granulocytes, cell-
type compositional changes could account for a much 
smaller proportion of total data variance. Similarly, 
in diseases such as cancer, which are characterized by 
large-scale changes in DNAm, involving most of the 
genome, only a smaller fraction of these changes are due 
to changes in cell-type composition48,55. Thus, methods 
such as ReFACTor or EWASher may not offer the level of 
sensitivity required for many types of EWAS48.

Semi-reference-free cell-type deconvolution. A promis‑
ing third paradigm, which remains underexplored, can 
be viewed as semi-reference-free (BOX 1). Conceptually, 
it adapts the removing unwanted variation (RUV) 
framework56, in that it attempts to infer ‘empirical con‑
trol features’, that is, features affected by confounding 
variation but not associated with the POI, which can 
subsequently be used to adjust the data. In the context of 
cell-type deconvolution, a pre-specified set of cell-type-
specific DMCs (for example, DMCs that differ between 
blood cell subtypes) could serve as empirical control 
features34,57. A recent algorithm, called RefFreeCellMix, 
which uses a constrained form of non-negative matrix 
factorization (NMF), can be easily adapted in this 
semi-reference-free manner to infer cell-type pro‑
portions33. By performing NMF on the reduced data 
matrix obtained by selecting cell-type-specific DMCs, 
RefFreeCellMix can obtain estimates of cell-type frac‑
tions, from which DMCs associated with a POI can 
subsequently be inferred using supervised regression. 
This approach was recently applied to the deconvolu‑
tion of breast cancer samples (EDec algorithm)34. More 
recently, a regularized version of RefFreeCellMix, called 
MeDeCom58, which favours latent factors (representing 
cell-type-specific DNAm profiles) that exhibit bi‑modal 
(that is, fully unmethylated or methylated) methylation 
states, has been shown to lead to improved modelling 
of cell-type composition. All these algorithms also offer 
a means of identifying the specific cell types carrying 
the DNAm alterations, although this remains largely 
unexplored.

Comparison of cell-type deconvolution algorithms. For 
a given EWAS, the choice of cell-type deconvolution 
algorithm depends mainly on the availability of a suit‑
able reference DNAm database. The database could be 
confounded by external factors such as age or genotype, 
rendering the references less useful for application to 
data sets where these factors might be very different 
(for example, using adult blood cell subtype reference 
profiles to estimate cell subtype fractions in umbilical 
cord blood59); in other cases, reference profiles gener‑
ated on purified cell populations may not capture impor‑
tant in vivo cell–cell interactions, which are known to 
alter molecular profiles60 (BOX 1). Beyond these limi‑
tations, there are three additional factors to consider 

when choosing a cell-type deconvolution method: 
first, the specific information desired (for example, 
DMCs, cell-type fractions or unsupervised discovery 
of novel cell types); second, the presence of additional 
confounding factors and whether these are known or 
unknown; and third, the POI and tissue type, which 
determines the relative data variance associated with 
the POI and cell-type composition. Recommendations 
and guidelines for different scenarios are provided 
(see FIG. 1B) and are largely in agreement with those 
of recent comparative studies47–49,61. Briefly, for DMC 
detection in tissues for which the main underlying cell 
types are known, reference-based methods, which are 
relatively assumption free and which can be combined 
with batch-correction methods such as COMBAT62, are 
recommended, unless confounders are unknown, in 
which case a method like SVA is preferable. Reference-
free or semi-reference-free methods are necessary for 
tissues for which no reference DNAm profiles are avail‑
able. Because reference-free methods are more depend‑
ent on model assumptions, special care must be taken 
in selecting the most appropriate method, which will 
depend by and large on the relative data variance car‑
ried by the POI and cell-type composition, as well as on 
the presence of unknown confounders (FIG. 1B). For esti‑
mating cell-type fractions, a reference-based algorithm is 
most appropriate, although semi-reference-based algo‑
rithms such as RefFreeCellMix or MeDeCom could also 
be used if the inferred latent components are uniquely 
mappable to underlying cell types33. Finally, one may 
also wish to perform cell-type deconvolution in order 
to discover novel cell types in a tissue of interest. This 
unsupervised application would require application of 
methods such as RefFreeCellMix or MeDeCom on the 
full set of available CpGs rather than on an informed 
subset of cell-type-specific DMCs.

Epigenetic heterogeneity within cell types. Epigenetic 
heterogeneity also manifests itself within specific cell 
types63, notably pluripotent cells64 and cells of the 
immune system65, but also within haematological 
cancers66,67 and the epithelial compartments of solid 
tumours55,68. In the context of precursor cancer lesions, 
such epigenetic heterogeneity is believed to be an 
important driver of cancer risk, whereas in cancer, 
clonal heterogeneity determines disease progression 
and response to drug treatment66. Thus, there is sub‑
stantial interest in developing statistical measures that 
can quantify epigenetic clonal heterogeneity. Such 
quantification is best done using WGBS or RRBS data, 
because associated reads (representing strings of binary 
methylated or unmethylated calls at single-nucleotide 
resolution) have the required spatial resolution to 
allow epiallelic diversity to be estimated (FIG. 1C). Also 
of particular importance is the detection of shifts in the 
proportions of specific epialleles, for which algorithms 
(for example, methclone69) have been developed. In the 
context of Illumina methylation bead arrays, identifying 
epigenetic loci marking shifts in epigenetic subclones is 
possible using statistical tests for detecting methylation 
outliers55.
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Table 1 | Algorithms and software for downstream statistical analyses of DNA methylation data

Name Description Programming 
language

Web links Refs

Cell-type deconvolution algorithms

CP/QP Reference-based method using constrained 
projection

R https://github.com/sjczheng/EpiDISH 31

RPC Reference-based robust partial correlations R https://github.com/sjczheng/EpiDISH 39

CIBERSORT Reference-based support vector regressions R https://github.com/sjczheng/EpiDISH 37

SVA Surrogate variable analysis (reference-free) R www.bioconductor.org 
SVA package

44

ISVA Independent surrogate variable analysis 
(reference-free)

R https://cran.r-project.org/package=isva 50

RefFreeEWAS Reference-free deconvolution R https://cran-r-project.org/
package=RefFreeEWAS

32

RefFreeCellMix Reference-free or semi-reference-free NMF 
using recursive QP

R https://cran-r-project.org/
package=RefFreeEWAS

33

MeDeCom Reference-free or semi-reference-free 
constrained and regularized NMF

R http://github.com/lutsik/MeDeCom 58

EDec Like RefFreeCellMix but applied to breast 
cancer or tissue

R https://github.com/BRL-BCM/EDec 34

RUV/RUVm Removing unwanted variation R http://www.bioconductor.org 
missMethyl package

56,208

CancerLocator Inference of tumour burden and tissue of 
origin from plasma cfDNA

Java https://github.com/jasminezhoulab 40

MethylPurify Tumour purity estimation from WGBS or 
RRBS data

Python https://pypi.python.org/pypi/MethylPurify 41

InfiniumPurify Tumour purity estimation from Illumina 
Infinium data

Python https://bitbucket.org/zhengxiaoqi/ 42

Algorithms for feature selection

BSSeq and 
BSmooth

DMR finder R http://www.bioconductor.org 
bsseq package

209

Bumphunter (minfi) DMR finder R http://www.bioconductor.org 
minfi package

86,87

DMRcate DMR finder R http://www.bioconductor.org 95

COMETgazer/ 
COMETvintage

Regions of co‑methylation and DMC or DMRs C++ and R https://github.com/rifathamoudi/
COMETgazer 
https://github.com/rifathamoudi/
COMETvintage

83

EVORA/iEVORA Differentially variable CpGs R https://cran.r-project.org/package=evora 55,68, 
98,103

DiffVar Differentially variable CpGs R www.bioconductor.org 
missMethyl package

100

GALMSS Generalized additive linear model for 
location, scale and shape

R https://cran.r-project.org/package=galmss 101

GSEA, pathway, integrative and system-level analysis

Gometh/gseameth 
(missMethyl)

Gene ontology and gene set enrichment 
analysis

R http://www.bioconductor.org 
missMethyl package

110

extractAB (minfi) Estimation of open and closed chromatin 
regions

R http://www.bioconductor.org 
minfi package

178

FEM/EpiMods Functional epigenetic modules (DNAm and 
mRNA)

R http://www.bioconductor.org 
FEM package

134

SMITE Significance-based modules integrating 
transcriptome and epigenome

R http://www.bioconductor.org 
SMITE package

160

ME‑Class Methylation-based expression classification 
and prediction

Python https://github.com/cschlosberg/me-class 85

ELMER Enhancer linking by methylation/expression 
relationships

R http://www.bioconductor.org 
ELMER package

147
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Independent component 
analysis
(ICA). An unsupervised 
dimensionality reduction 
algorithm that decomposes the 
data matrix into a sum of linear 
components of variation, which 
are as statistically independent 
from each other as possible. 
Statistical independence is a 
stronger condition than the 
linear uncorrelatedness of 
principal component analysis 
(PCA) components, allowing 
improved modelling of sources 
of variation in complex data.

Principal component 
analysis
(PCA). An unsupervised 
dimensionality reduction 
algorithm that decomposes the 
data matrix into a sum of linear 
principal components (PCs) of 
variation, ranked by decreased 
variance and uncorrelated to 
each other.

Latent components
Components or sources of data 
variation that are ‘hidden’ (or 
latent) and that are inferred 
from the data using an 
unsupervised algorithm.

Feature selection and interpretation
The most common task in analysing omic data is fea‑
ture selection. For any given EWAS, it is useful to think 
of CpG DNAm profiles as belonging to specific ‘fami‑
lies’, each characterized by a particular pattern or shape 
and each linked to an underlying putative biological 
(or technical) factor. For instance, DNAm variation of 
CpGs marking specific cell types will typically exhibit 
patterns of DNAm variation that correlate linearly with 
the underlying cell-type fractions, whereas those driven 
by genetic variants will not. Given that current technol‑
ogies allow measurement of DNAm in effectively one 
million to several million CpG sites, small differences 
in feature selection methods can have a dramatic impact 
on the specific ranking and selection of CpGs. An appre‑
ciation of the intricacies of feature selection is therefore 
critically important.

Variably methylated cytosines. A popular unsupervised 
feature selection strategy is to rank and filter features 
by variance or by a robust version such as the median 
absolute deviation; the aim is to select the most  
variably methylated cytosines (VMCs), while also remov‑
ing those that exhibit little or no variance (which are 
assumed to represent noise)70. However, applying this 
strategy to DNAm data could bias the selection of fea‑
tures, given that DNAm data are usually quantified in 
terms of a beta value, which by construction is hetero-
scedastic. In fact, for beta values, variance is maximal 

at a value of 0.5 (REF. 71); hence, filtering by variance 
could favour genomic regions with intermediate mean 
levels of DNAm. Filtering tools that avoid this bias have 
been developed72. Alternatively, DNAm may be quan‑
tified in terms of M‑values71, which can be obtained 
directly from the log-ratio of intensities of methylated 
to unmethylated alleles or indirectly from beta values by 
applying the logit transformation. In principle, M‑values 
are more homoscedastic, although care must be taken 
with features that have methylation beta values close to 
0 or 1, as the logit transformation can turn these into 
significant outliers71,73.

In general, VMCs will exhibit a large range of 
DNAm values and will include those driven by single-
nucleotide polymorphisms (SNPs). For a substantial 
number of these VMCs, the variation will be driven by 
a SNP affecting the interrogated cytosine (or another 
cytosine located within the probe body in the case of 
Illumina bead arrays), and such VMCs are normally 
removed during quality control74,75. For other VMCs, 
the SNP driving the variation will not be located at 
the interrogated cytosine (nor in the underlying 
probe), thus defining methylation quantitative trait loci 
(mQTLs)76 (FIG. 2a). Although mQTLs are highly var‑
iable, they are not always prominent features driving 
top components in a PCA unless the study cohort con‑
sists of populations stratified by ancestry18,76,77. This is 
because principal components represent components 
of maximal covariation, so that mQTLs (especially 

TENET Tracing enhancer networks using epigenetic 
traits

R http://farnhamlab.com/software  
http://www.bioconductor.org 
TENET package

150

TEPIC Integration of open-chromatin data (for 
example, NOMe-Seq or DHS) to predict gene 
expression

Python or C++ https://github.com/schulzlab/TEPIC 210

iCluster/iCluster+ Integrative clustering R http://www.bioconductor.org 
iClusterPlus package

137

PARAFAC 
(multiway)

Parallel factor analysis and non-Bayesian 
tensor decomposition

R https://cran.r-project.org/
package=multiway

168

SDA Sparse decomposition analysis and Bayesian 
tensor decomposition

Linux executable https://jmarchini.org/sda 169

JIVE Joint and individual variation explained R https://cran.r-project.org/package=r.jive 166

Methods for causal inference

MR‑Base An analytical platform that uses curated 
GWAS data to perform Mendelian 
randomization tests and sensitivity analyses

R http://www.mrbase.org 211

JLIM Joint likelihood mapping R http://github.com/cotsapaslab/jlim/ 212

Bayesian coloc Bayesian test for colocalization R https://cran.r-project.org/package=coloc 213

gwas‑pw Joint analysis of GWAS signals R https://github.com/joepickrell/gwas-pw 214

HEIDI Heterogeneity in dependent instruments C++ http://cnsgenomics.com/software/smr/ 215

cfDNA, cell-free DNA; CP, constrained projection; CpGs, cytosine–guanine dinucleotides; DHS, DNase-hypersensitive site; DMC, differentially methylated CpG; 
DMRs, differentially methylated regions; GSEA, gene set enrichment analysis; GWAS, genome-wide association study; NMF, non-negative matrix factorization; 
NOMe-seq, nucleosome occupancy and methylome sequencing; QP, quadratic programming; RRBS, reduced-representation bisulfite sequencing; WGBS, 
whole-genome bisulfite sequencing.

Table 1 (cont.) | Algorithms and software for downstream statistical analyses of DNA methylation data

Name Description Programming 
language

Web links Refs

GSEA, pathway, integrative and system-level analysis (cont.)
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those with low minor allele frequencies) account for 
only relatively smaller fractions of data covariance. 
Other VMCs that will appear more prominently in top 
principal components may be associated with other 
biological factors such as cell-type composition (FIG. 2a) 
or may exhibit strongly bi‑modal profiles such as those 
seen in cancer.

Differentially methylated cytosines and regions. The 
most common supervised feature selection proce‑
dure is to select CpGs for which there is a significant 
difference in the average between phenotypes, defin‑
ing DMCs (FIG. 2b). The simplest method for selecting 
DMCs is that based on the absolute difference in mean 
beta values, which is analogous to the log-fold-change 

Figure 2 | Variability, differential means and differential variability in 
DNA methylation data. a | Two examples of variably methylated 
cytosines (VMCs), one driven by single-nucleotide polymorphisms (SNPs) 
located in cis with the indicated cytosine–guanine dinucleotide (CpG) 
(defining a well-known cis methylation quantitative trait locus (cis-mQTL)) 
(left panel) and another driven by variation in immune-cell contamination 
(right panel). Both profiles of CpG DNA methylation (DNAm) derive from 
an Illumina Infinium DNAm data set encompassing 152 normal cervical 
smear samples68. For the mQTL, samples are grouped according to the 
predicted genotype. For the other VMC, blue denotes normal cervical 
smears from women who 3 years after sample collection developed a 
cervical intraepithelial neoplasia of grade two or higher (CIN2+), whereas 
green denotes normal cervical smears from women who remained 
healthy. This particular VMC is unmethylated in all white blood cells 
(WBC) but not in cervical epithelial cells, and so the variation in the 
cervical smear is due to variation in WBC contamination. Panels illustrate 
how SNPs and cell-type composition can drive large variation in DNAm, 
but variation that may not correlate with case versus control status. 
b | Contrast between differentially methylated cytosines (DMCs) and 
differentially variable cytosines (DVCs). Two examples of each are given, 
drawn from Illumina Infinium DNAm data from normal cervical smears 

(green) and either cervical intraepithelial neoplasia (CIN2+) or cervical 
cancer (both blue). The average levels are shown as horizontal dashed 
lines. Observe how a DMC is typically characterized by most samples in 
one phenotype exhibiting a deviation in DNAm value. By contrast, a DVC 
is characterized by a very stable DNAm profile in one phenotype but by 
DNAm outliers driving large variation in the other. c | Example of a CpG 
that exhibits progression in DNAm between successive stages in cervical 
carcinogenesis. When comparing normal cervical smears that progress to 
CIN2+ (Normal→CIN2+) to those that do not (Normal→Normal), this CpG 
can be identified (that is, with a highly significant P‑value) only via a test 
for differential variance (or for deviation from normality) such as Bartlett’s 
test. When comparing CIN2+ to normal cervical smears, differential 
variance is still the main distinguishing feature. Only when comparing 
(invasive) cervical cancer to normal cervix does this CpG exhibit a stronger 
difference in average DNAm, therefore enabling its identification using, 
for example, t‑tests or Wilcoxon tests. Thus, this panel illustrates how the 
DNAm profile of the same CpG changes during cervical carcinogenesis 
and emphasizes the importance of selecting the appropriate statistical 
test, as the choice of test will have a dramatic impact on feature selection. 
All data shown represent real DNAm data derived from REF. 68, with the 
corresponding CpG identifier given above each panel.

R E V I E W S

8 | ADVANCE ONLINE PUBLICATION	 www.nature.com/nrg

©
 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



Variably methylated 
cytosines
(VMCs). Cytosines (usually in a 
CpG context) that exhibit a 
significant amount of variance 
in DNA methylation, as 
assessed across independent 
samples and relative to other 
CpG sites.

Heteroscedastic
Of a statistical distribution or 
of a random sample thereof, 
the expected variance, or 
spread, being dependent on 
the mean.

Logit transformation
A mathematical transformation 
that takes values defined on 
the unit interval (0,1) (for 
example, beta values (β)) into 
values defined on the open 
interval (-∞,+∞), termed 
M‑values. Mathematically, 
M = log2[β/(1 − β)].

Methylation quantitative 
trait loci
(mQTLs). CpG sites whose DNA 
methylation level is correlated 
with a single-nucleotide 
polymorphism (SNP). If the 
SNP occurs close to the CpG 
(for instance, within a 10 kb 
window), it is called cis-mQTL, 
otherwise trans-mQTL.

Differentially variable 
cytosines
(DVCs). Cytosines (usually in a 
CpG context) that exhibit a 
statistically significant 
difference in the variance of 
DNA methylation between two 
groups of samples, according 
to some statistical test.

Field defects
Genetic or epigenetic 
alterations that are thought to 
predate the development of 
cancer and that are usually 
seen in the normal tissue found 
adjacent to cancer.

used in the gene expression context. However, because 
of the heteroscedasticity of beta values, such filtering 
may again bias selection against CpGs with very low or 
very high mean levels of methylation71. A much safer 
option is to apply such thresholding on differences in 
mean beta value only after having ranked or selected 
features based on some formal statistic, as the statistic 
incorporates information about the spread of the data 
within phenotypes. One option is to use non-parametric 
Wilcoxon rank sum tests, as these consider only the rela
tive ranking of beta values, although a caveat is that these 
tests are less powered. Another option is to use t‑tests. 
Although t‑tests require the data within the phenotypes 
being compared to be Gaussian distributed (an assump‑
tion not satisfied with beta-valued data), nevertheless, 
in practice, this does not impose any more of a limita‑
tion than the non-Gaussian nature of, for example, gene 
expression data from microarrays or RNA sequencing 
(RNA-seq), for which empirical Bayesian frameworks 
built on regularized t‑statistics have proved extremely 
popular78–80. For feature selection, what matters is the 
distribution of values across samples, and for both 
DNAm and mRNA expression data, this distribution 
is approximately Gaussian. Confirming this, t‑statistics 
and moderated t‑statistics have been successfully 
applied to beta-valued data and shown to lead to very 
similar rankings compared to the application of the 
same statistics to M‑values73. An important exception 
is when using Bayesian models, which are naturally 
more sensitive to underlying model assumptions (often 
Gaussian distributions). For instance, in studies with 
small sample sizes, empirical Bayes models are neces‑
sary for obtaining improved estimates of variance, thus 
favouring M‑values71,73. DMCs derived from t‑tests or 
regularized t‑tests may or may not exhibit large differ‑
ences in average DNAm, since a CpG exhibiting a small  
(for example, 5%) difference in mean methylation but 
with low variance within phenotypes may still have a 
large t‑statistic. Many smoking-associated DMCs iden‑
tified in whole blood are of this type17. Cancer DMCs, on 
the other hand, generally exhibit much larger differences 
in mean DNAm (>30%, FIG. 2b).

Differential methylation can also be called at the 
regional level. There are a number of reasons why iden‑
tifying differentially methylated regions (DMRs) is 
desirable. First, due to the processivity of DNA methyl
transferases and other enzymes modifying the epi
genome, DNAm is generally highly correlated on scales 
up to approximately 500 bp and beyond16,81. DNAm alter‑
ations associated with disease phenotypes and age typi‑
cally also exhibit such spatially correlated patterns, albeit 
much weaker16. Thus, calling DMRs removes some of 
the spatial redundancy, helping to reduce the dimension‑
ality of the data. Second, calling differential methylation 
at the regional level may offer increased robustness, 
especially in the context of limited-coverage WGBS 
data82,83. Third, although still controversial, DNAm alter‑
ations that extend to the regional level are thought to be 
more functionally important than alterations that affect 
only isolated sites84,85. Statistical algorithms for calling 
DMRs include bumphunter86,87, an algorithm originally 

designed for high-resolution DNAm data (for example, 
WGBS or CHARM88) but that has also been success‑
fully adapted for Illumina Infinium BeadChips and that 
can allow detection of small (~1–5 kb) DMRs, as well 
as larger (~100 kb−2 Mb) DMRs, termed differentially 
methylated blocks (DMBs)89–94. A more recent algorithm 
tailored for WGBS data, and which exploits the spatial 
correlation structure of DNAm, identifies regions of 
covariation in methylation (COMETs)82,83, which can 
then be used as regional features for differential methy
lation analysis. Using COMETs to call differential 
methylation can result in improvements in sensitivity 
of greater than 40–50% compared with DMC calling, 
even in WGBS data with 30× coverage82,83. Spatial cor‑
relation of methylation across different tissues and cell 
types has also been recently used to define ‘methylation 
haplotype blocks’, which facilitates the identification of 
the tissue of origin of ctDNA in serum16. More recently, 
adopted methods for identifying DMRs are DMRcate95 
and Comb‑p96. It is noteworthy that each DMR method 
differs in the assumptions made and statistical approach 
taken and that different methods therefore very rarely 
identify precisely the same DMRs.

Differentially variable cytosines and regions. An 
entirely different feature selection paradigm is based on 
features that exhibit differential variance in methylation 
between two phenotypes, so‑called differentially variable 
cytosines (DVCs). This approach computes the vari‑
ance across samples belonging to the same phenotype 
and then compares this variance between two or more 
phenotypes using a statistical test for differential vari‑
ance97 (BOX 2). It is important to appreciate that DVCs 
may not be DMCs (and vice versa) and that there are 
also different types of DVCs (FIG. 2b).

The importance of differential variance has been 
most clearly demonstrated in the context of early 
carcinogenesis68,98, where differential variance between 
normal cells from healthy individuals and normal cells 
at risk of neoplastic transformation is critical to the iden‑
tification of DNAm alterations that define field defects 
in breast55 and cervical cancer68 (FIG. 2c). These DNAm 
alterations are characterized by relatively large changes 
in DNAm (typically 20–30% or higher), defining out‑
liers, that occur predominantly, or exclusively, in the 
samples at risk of neoplastic transformation (FIG. 2c). As 
might be expected from DNAm alterations in cells that 
have not yet undergone neoplastic transformation, these 
outlier events are relatively infrequent and exhibit a sto‑
chastic pattern55. However, in cells that have undergone 
neoplastic transformation or turned invasive, the pattern 
of DNAm variation becomes more homogeneous and 
deterministic, in the sense that effectively all (or most) 
cancer samples exhibit a difference in DNAm (FIG. 2c). 
By combining differential-variance-based feature selec‑
tion with an adaptive index classification algorithm99 in 
an approach called epigenetic variable outliers for risk-
prediction analysis (EVORA)68, such DVCs have been 
demonstrated to allow prediction of the prospective risk 
of cervical cancer (BOX 2). A modification of EVORA, 
called iEVORA, which offers improved control of the 
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Type 1 error rate
The probability of erroneously 
calling the result of a test 
significant (positive) when the 
underlying true hypothesis is 
the null. It corresponds to the 
fraction of true negatives that 
are called positive, also known 
as the false-positive rate.

Variably methylated regions
(VMRs). Contiguous genomic 
regions where DNA 
methylation is highly variable 
relative to a normal ‘ground 
state’. A VMR can be defined 
for one given sample.

type 1 error rate, was recently used to demonstrate the 
existence of DNAm field defects in the normal tissue 
adjacent to breast cancer55. Given the growing impor‑
tance of differential variance, a number of other algo‑
rithms100–102 have been proposed that offer an improved 
control of the type 1 error rate over the test implemented 
in EVORA. However, with a stricter control of the type 1 
error rate, these other differential variance algorithms 
may also lack the sensitivity to detect DNAm altera‑
tions in precursor cancer lesions103. Thus, their appli
cation appears limited to other phenotypes (for example,  
neoplasia or invasive cancer).

An altogether different phenotype for which differen‑
tial variance has recently been demonstrated to lead to 
novel insight is age77. Specifically, the Breusch–Pagan test 
for heteroscedasticity was used to identify CpGs whose 
DNAm variability increases with age, identifying sites 
that are very different to those making up age-predictive 
epigenetic clocks8,104 and that appear to be more relevant 
for understanding ageing mechanisms77.

As with differential methylation, differential variance 
may also be defined at the regional level. First, it has 
been possible to demonstrate that there are genomic 
regions of increased DNAm variability, so‑called vari-
ably methylated regions (VMRs)105, also termed regions 
of high methylation disorder or entropy106. Regions that 
constitute VMRs in one phenotype (for example, can‑
cer) but not in another (for example, normal tissue) are 
differentially variable regions (DVRs)105. DVR detection is 
possible using dedicated functions in software packages 
such as minfi87 or DMRcate95, although the implemented 
differential variance tests are aimed only at controlling 
the type 1 error rate and may thus be underpowered for 
detecting epigenetic field defects in cancer studies55.

Interpreting DNA methylation changes. Beyond cell-
type composition107, observed DNAm alterations could 
be associated with deregulation of specific genes or 
signalling pathways in individual cell types34,108. Thus, 
there is a strong rationale for testing the enrichment 
of identified features for specific gene ontology (GO) 
terms and signalling pathways. As multiple DMCs or 
DVCs may map to the same gene, it is critical to adjust 
for differential representation109 to avoid spurious over-
representation in certain pathways by virtue of a higher 
probe or CpG density in those genes involved. This 
adjustment can be done with the gometh/gseameth 
algorithm110. An alternative approach is to assign a 
DNAm value to a given gene, such as by focusing on 
the average DNAm within a certain distance of the tran‑
scription start site (TSS)111, and to then identify differen‑
tially methylated genes, which can be subsequently fed 
into popular gene set enrichment analysis (GSEA) meth‑
ods112,113. With a DNAm value assigned to each gene, one 
may also perform differential methylation analysis at the 
level of signalling pathways or search for differentially 
methylated gene modules (called ‘EpiMods’) within pro‑
tein–protein interaction (PPI) networks111. For instance, 
such an approach demonstrated that the WNT signalling 
pathway, a key developmental pathway, is a hot spot of 
age-associated DNAm deregulation111.

Integration of DNAm with other types of omic data 
There are many factors that limit the interpretability 
of the DNAm data generated in a typical EWAS114,115. 
Besides cell-type heterogeneity, genetic variation and 
reverse causation (that is, alterations to measured DNAm 
levels caused by the phenotype itself) can also cause 
confounding18,116. As a predictor of gene expression, 
DNAm is also limited and outperformed by chromatin 
state information encoded by histone modification 
marks117,118. Thus, enhancing interpretability requires 
integration with other types of omic data, including 
genotype or gene expression matched to the same 
samples for which DNAm is available.

Integration of DNAm with genotype. Total heritability 
of DNAm has been estimated at 20%76,119, with common 
SNPs accounting for approximately 37% of this herit
ability76. In line with this, many studies have demon‑
strated that mQTLs are widespread76,120,121, accounting 

Box 2 | Differential variability: a novel feature-selection paradigm

Differential variance
Differential variance (DV) is a novel statistical paradigm for feature selection that has 
been shown to be valuable in studies seeking DNA methylation (DNAm) field defects, 
that is, DNAm alterations that appear in the normal cell of origin of epithelial cancers 
and that become enriched in cancer. A test for DV identifies cytosine–guanine 
dinucleotides (CpGs) for which the variance in DNAm differs significantly between 
phenotypes, defining differentially variable cytosines (DVCs). Hypervariable DVCs 
exhibit increased variance (conversely, hypovariable DVCs exhibit decreased variance) 
in the disease phenotype compared to normal controls. Depending on the specific test 
for DV, DVCs typically contain varying numbers of outliers, which occur exclusively or 
predominantly in one phenotype. DVCs may also exhibit ultra-stable (that is, very low 
variance) DNAm in one phenotype but not in the other.

Statistical tests for DV
Bartlett’s test. This test assumes normality for each of two underlying distributions 
being compared and is therefore sensitive to outliers. Although it suffers from a high 
type 1 error rate, its sensitivity to outliers (that is, deviations from normality) makes it an 
attractive choice because in precursor cancer lesions, DNAm outliers have been shown 
to be biologically relevant. This test is used in epigenetic variable outliers for 
risk-prediction analysis (EVORA) and iEVORA and was instrumental to identifying 
DNAm field defects in cervical and breast cancer (TABLE 1).

The Levene and Brown–Forsythe tests. Levene’s test compares the absolute spread of 
values from the mean in each group, using a one-way ANOVA F‑test, whereas the 
Brown–Forsythe test uses the median instead of the mean, rendering it more robust. 
Both tests are less sensitive to departures from normality than Bartlett’s test.  
Levene’s test is implemented in the DiffVar package (TABLE 1).

Breusch–Pagan test. This is a test for heteroscedasticity or differential variability in a 
response variable (here, DNAm) as a function of an independent variable with 
continuous values (for example, age). It works by correlating the independent variable 
with the residuals of a linear regression of the response variable against the 
independent variable. This test has been used to identify CpGs exhibiting 
age-associated increases in DNAm variance (see the main text).

EVORA
EVORA is a statistical framework that uses differential variability in DNAm to identify 
CpGs that exhibit outlier DNAm values in normal cells that are at risk of neoplastic 
transformation compared to normal cells that are not at risk. For a given risk-marker 
CpG, this method assumes that DNAm outliers may exhibit stochasticity — that is, they 
define infrequent events across independent samples. Feature selection using DV is 
combined with an adaptive index classification algorithm (effectively, a counting 
scheme for the number of outliers in a sample) to construct a risk score.
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Differentially variable 
regions
(DVRs). Contiguous genomic 
regions containing a 
statistically significant number 
of differentially variable 
cytosines (DVCs). This is 
different from a variably 
methylated region (VMR) in 
that a DVR is derived by 
comparing a fairly large 
number of cases and controls.

Gene set enrichment 
analysis
(GSEA). A widely used 
statistical procedure to assess 
whether a derived gene list of 
interest is enriched for specific 
biological terms, usually 
including gene ontologies, 
signalling pathways, specific 
transcriptomic signatures or 
targets of gene regulators.

System epigenomics
An emerging field whereby 
cellular phenotypes in normal 
development and disease are 
modelled as complex systems, 
using tools from complexity 
science (for example, 
dynamical system theory or 
statistical physics) to 
understand them.

for almost 40% of assayed CpG sites and explaining 
approximately 20% of the inter-individual variation in 
DNAm, with environmental effects accounting for the 
remaining 80%76. Thus, adjusting for DNAm variation 
induced by genetic variation is a common procedure in 
EWAS, which can be achieved using PCA on the matched 
genotype data76,77,122 or directly from DNAm data if no 
matched genotype information is available123. Beyond 
being a source of confounding, genetically driven DNAm 
variation provides a useful resource for interrogating the 
functional role of DNAm variation in disease-associated 
loci. For example, functional inferences can be made by 
ascertaining whether disease-associated genetic variants 
from genome-wide association studies (GWAS) are also 
mQTLs (and may thus be influencing disease risk partly 
via epigenetic pathways) or by using genotype as a causal 
anchor to strengthen causal inference regarding the role 
of DNAm in mediating pathways to disease124–126 (BOX 3; 
FIG. 3A). As a concrete example, genetic variants associated 
with blood lipid levels were used to demonstrate a causal 
effect of lipid levels on DNAm in blood, whereas mQTLs 
associated with lipid-level DMCs in blood excluded an 
effect in the reverse direction116. Such inference can thus 
help to establish causal directionality in an EWAS of a 
disease risk factor, determining whether DNAm may 
mediate that risk.

Integration of DNAm with gene expression. The 
relationship between DNAm and gene expression is 
complex. From a modelling perspective, the first chal‑
lenge is that it is not only the DNAm profile of the gene 
itself but also the DNAm levels at distal regulatory ele‑
ments, notably enhancers, that dictate the expression 
level of a gene. In the context of cancer, distal regulation 
by DNAm patterns at enhancers appears to account for 
more of the intertumour expression variation than cor‑
responding DNAm changes at promoters127. However, 
expression variation should be assessed primarily against 
the normal tissue reference (which is often not done), 
and adjustment for cell-type heterogeneity is impera‑
tive, as enhancers are among the most cell-type-specific 
regions108,128. Also problematic is that most enhanc‑
ers loop over their nearest genes to target genes much 
further away, causing uncertainty as to which genes 
an enhancer may regulate. Although improved statis‑
tical methods for linking enhancers to their putative 
gene targets are emerging129, these still need further 
improvement. Focusing on the gene itself, a third chal‑
lenge is to ascertain which part of a gene’s DNAm pro‑
file is most predictive of its transcript level, as this may 
also depend on biological context and is still a matter of 
debate, with some studies suggesting gene-body methy
lation levels as being more predictive than the more 
classical TSS region130–132. However, a meta-analysis 
of human genome-wide methylation, expression and 
chromatin data has demonstrated that the relationship 
between gene-body methylation and gene expression is 
non-monotonic, with the genes expressed at the lowest 
and highest levels exhibiting the highest levels of gene-
body methylation133. This meta-analysis is consistent 
with other studies demonstrating that it is the TSS, first 

exon and 3ʹ end that exhibit the strongest monotonic 
associations85,134,135. At the TSS and first exon, the cor‑
relation is usually negative, characterized by a highly 
nonlinear ‘L’-shape function: that is, methylated pro‑
moters are generally associated with gene silencing, 
whereas unmethylated promoters associate with both 
transcribed and untranscribed states136. Focusing on a 
specific predictive region such as the first exon or TSS 
allows assignment of a DNAm value to each gene, such 
as by averaging DNAm values for CpGs in this region. 
The monotonic relation (be it linear or nonlinear) 
between DNAm and transcription in these regions fur‑
ther facilitates subsequent integration with gene expres‑
sion or with other gene-level omic data (for example, 
copy-number variants). Importantly, the procedure of 
assigning a DNAm value to a gene is a necessary pre‑
liminary step for integrative clustering analyses using 
tools such as iCluster+, which perform joint clustering 
of samples over a common set of features (usually genes) 
defined for different data types137–139.

Other attempts at integration of DNAm and gene 
expression do not assign a unique DNAm value to a 
gene; instead, they use information about the spatial 
shape of the DNAm profile over a gene (and beyond) 
as a predictor of gene expression84,85. Such an approach 
requires DNAm data at high resolution (for example, 
WGBS) to then perform unsupervised clustering of 
gene-based spatial DNAm profiles, typically centred 
on a 10–30 kb window around the TSS of genes, and 
subsequently using special distance metrics to quan‑
tify the similarity of spatial DNAm profiles84. This 
novel approach identified 4–5 spatially distinct DNAm 
shapes, each correlating with underexpression or over
expression in cis84, further confirming that DNAm pat‑
terns that extend well beyond the 5ʹ and 3ʹ ends of a gene 
are equally informative of gene expression15,108. More 
recently, a supervised version of this spatial clustering 
method, which uses a random-forest classifier called 
ME‑Class, has been shown to improve the prediction of 
gene expression, highlighting the importance of the TSS 
and 3ʹ end as the most predictive gene regions85.

System-level integration of DNAm. A powerful sys‑
tem-level integrative approach is to exploit the well-
known association of DNAm at regulatory elements with 
TF binding140–145 to infer patterns of regulatory activity 
in development and disease. Although DNAm at regu
latory sites has traditionally been viewed as dictating 
TF binding affinity, the converse (that is, DNAm levels 
at regulatory sites being a reflection of binding activity) 
is also frequently observed115,142. Furthermore, whereas 
for most classes of TFs, in which DNAm inhibits or is 
inversely correlated with binding, there are other classes 
of TFs (for example, those belonging to the homeo
domain, POU and NFAT families) that prefer binding to 
methylated sequences143. Thus, although the relationship 
between DNAm and TF binding is undoubtedly com‑
plex, two recent key observations have helped to spur a 
number of novel system epigenomics methods for inferring 
TF binding activity. One key observation is that tissue-
specific TFs can be identified as those with enrichment 
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Pleiotropy
A phenomenon that occurs 
when a genetic variant is 
associated with multiple traits. 
Vertical pleiotropy occurs 
where the traits are all on the 
same pathway (and is generally 
less of a problem), whereas 
horizontal pleiotropy exists 
where a genetic variant is 
associated with multiple traits 
via separate pathways.

Expression quantitative 
trait loci
(eQTLs). Genes whose 
expression levels are 
correlated with 
single-nucleotide 
polymorphisms (SNPs). If the 
SNP occurs near (definitions 
vary, but it could range from 
10 kb to a 1 Mb window 
centred on the transcription 
start site) the gene, it is called a 
cis-eQTL; otherwise, it is a 
trans-eQTL.

in unmethylated or relatively hypomethylated binding 
sites108. Although this was demonstrated by integrating 
WGBS and Encyclopedia of DNA Elements (ENCODE) 
ChIP–seq data across multiple different cell types108, other 
studies have shown that similar inferences are possible 
with lower resolution Infinium methylation bead arrays91. 

A second key observation is that integration of trans-
mQTLs with cis expression quantitative trait loci (cis-eQTLs) 
can reveal coordinated DNAm alterations at binding sites 
of a TF whose expression is altered by the SNP, thus pro‑
viding an important novel paradigm for elucidating the 
downstream effects of non-coding GWAS SNPs122 (FIG. 3B).

Box 3 | Statistical approaches for establishing mediation by DNA methylation

DNA methylation (DNAm) is a molecular phenotype that is influenced by endogenous and exogenous factors as well as 
disease processes themselves, and this presents challenges in understanding the correlations between measures of 
interest. A variety of statistical methods have been applied to dissect causal relationships and to construct causal 
pathways involving molecular intermediates including DNAm. These methods have been applied to differentially 
methylated cytosines (DMCs) only and have yet to be extended to consider the mediating role of differentially 
methylated regions (DMRs).

Exposure–outcome mediation
The most commonly applied approach in epidemiology is a regression-based method originally proposed by Baron and 
Kenny199 that aims to distinguish the degree of mediation of an exposure (E) on an outcome (Y) by an intermediate (M). 
The Sobel test is applied to ascertain whether the effect of E on Y is statistically significant once adjusted for M.

Advantages

•	It is simple to administer.

•	The proportion of mediation can be quantified.

Disadvantages

•	It requires strong assumptions that are often violated when applying it to molecular mediators. These assumptions 
include (i) that Y and M are continuous and (ii) that there is no measurement error in the mediator.

•	This method should be applied only in the context of complete (not partial) mediation, which is usually not the case 
when considering DNAm.

•	Other, more flexible methods have been applied to DNAm data, including linear equations, structural equation models, 
marginal structural models and G‑computation; however, these approaches all require assumptions of no measurement 
error and no unmeasured confounding, which are violated in analyses involving DNAm.

Causal inference test (CIT)
This popular approach for exploring causal links in DNAm analyses uses genetic variation as a causal anchor. It is 
analogous to the Baron and Kenny approach in its use of a series of regression analyses to establish mediated effects but 
uses genotype (G) in place of the exposure (E). This approach has been used to infer the causal effect of methylation 
quantitative trait loci (mQTLs) on a particular outcome30.

Advantages

•	It avoids confounding and reverse causation in the mediator–outcome relationship by using genotype as a causal anchor.

•	It is simple to apply.

Disadvantages

•	It relies on a P‑value to determine the causal effect and does not estimate the magnitude of the mediated effect.

•	It is vulnerable to measurement error in the mediator or outcome.

•	It cannot differentiate between a mediated effect and a situation in which the genetic variant directly influences the 
outcome via an alternative biological pathway (pleiotropy).

Mendelian randomization
This form of instrumental variable (IV) analysis makes use of genetic variants that are robustly associated with the 
exposure (E) or mediator (M) of interest. It can also be applied in the reciprocal direction to evaluate the direction of 
cause from a postulated outcome (Y) on the apparent exposure or mediator. The assumptions of Mendelian 
randomization (MR) are detailed at length elsewhere200. Its application in the context of DNAm is becoming more 
widespread116,201–203, and an automated platform for MR analysis is freely available (http://www.mrbase.org/) to facilitate 
this (see TABLE 1).

Advantages

•	It provides an estimate of the magnitude of the mediated effect.

•	It overcomes the issue of measurement error in the mediator because genotype is usually measured accurately.

•	It is readily applicable through online tools.

Disadvantages

•	It is reliant on the identification of cis-mQTLs to tag the differentially methylated site of interest.

•	It has low power, which necessitates the use of large sample sizes.

•	The potential pleiotropy of genetic variants, although strategies can be adopted to counter this limitation204,205.
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This inverse correlation between DNAm and 
regulatory-element activity can be exploited by com‑
putational tools to infer disrupted regulatory networks 
associated with disease risk factors51,91,122,146 and dis‑
ease itself 127,147,148. For instance, the enhancer linking 
by methylation/expression relationships (ELMER) 
algorithm147 (TABLE 1) begins by identifying enhancers 
(annotated by ENCODE and the Roadmap Epigenomics 
Mapping Consortium15,149) whose DNAm levels are 
altered in cancer. It then uses the matched mRNA expres‑
sion of putative gene targets to construct cancer-specific 
enhancer–gene networks. ELMER subsequently uses 
TF‑binding motif enrichment analysis for correlated 
enhancers and mRNA expression of enriched TFs to 
identify cancer-specific activated TFs. Other similar 
approaches, such as tracing enhancer networks using 
epigenetic traits (TENET)150 and RegNetDriver151, have 
recently been proposed (TABLE 1). RegNetDriver con‑
structs tissue-specific regulatory networks by integrating 
cell-type-specific open-chromatin data with regulatory 
elements from ENCODE and RMEC, allowing active 
regulatory elements in a tissue to be identified. Mapping 
disease-associated molecular alterations in that tissue 
onto the corresponding tissue-specific network can 
reveal which TFs are deregulated in disease151. All these 
tools can lead to important novel hypotheses (for exam‑
ple, ELMER identified RUNX1 as a key TF determin‑
ing clinical outcome in kidney cancer), as well as novel 
insights (for example, RegNetDriver revealed that most of 
the functional alterations of TFs in prostate cancer were 
associated with DNAm changes but that TF hubs were 
preferentially altered at the copy-number level). However, 
obvious limitations remain: the sets of enhancer regions 
used are usually not cell-type-specific or were gener‑
ated in unrepresentative cell-line models, while link‑
ing genes to enhancers and vice versa is challenging as 
most enhancers skip their nearest promoter to link to 
genes that are much further away (contact distances 
can range from 40 kb to 3 Mb with a median distance of 
~180 kb152,153). Although tools like ELMER and TENET 
use correlations between enhancer DNAm and mRNA 
target expression to hone in on the more likely targets, 
these correlations are themselves subject to potential  
confounders such as cell-type heterogeneity.

Another valuable system-level integrative strategy, 
exemplified by the functional epigenetic modules (FEM) 
algorithm (TABLE 1), has been to integrate DNAm and gene 
expression data in the context of a gene function network, 
for instance a PPI network, to identify hot spots (gene 
modules) where there is significant epigenetic deregu
lation in relation to some phenotype of interest134,154 
(FIG. 3C). There are two main reasons why integration of 
DNAm with a PPI network is meaningful. First, PPI net‑
works encode information about which proteins interact 
together and which are therefore more likely to be co‑
expressed as part of a common biological process or sig‑
nalling pathway. This co‑expression is likely to be under 
epigenetic control and therefore potentially measurable 
from DNAm patterns at the corresponding genes111. 
Indeed, like gene expression, DNAm also exhibits modu‑
larity in the context of a PPI network, whereby promoter 

DNAm levels of genes whose proteins interact are on aver‑
age more highly correlated than those of non-interacting 
proteins111 (FIG. 3C). Second, using a functional network 
from the outset and searching for subnetworks where 
there is simultaneous differential methylation and differ‑
ential expression can help to identify biological pathways 
or processes that are epigenetically deregulated, which in 
turn may lead to novel insight. This is not dissimilar to 
performing a direct form of GSEA but using a network 
instead of an external database of biological terms. Similar 
supervised functional network algorithms have been 
extensively applied in the gene expression context, lead‑
ing to important novel insights155–157. As an example of the 
insights gained using FEM, it successfully identified two 
separate gene modules with the main targets of epigenetic 
silencing mapping to a target (HAND2) and co‑activator 
(TGFB1I1) of the progesterone receptor, a key tumour 
suppressor pathway for which inactivation is thought to 
contribute causally to the development of endometrial 
cancer 134,154. More recently, other algorithms that extend 
or modify FEM have been proposed158,159 (TABLE 1). The 
algorithm ‘significance-based modules integrating the 
transcriptome and epigenome’ (SMITE)160 can identify 
DNAm-mediated altered cellular states (for example, gene 
modules) without the need for direct integration with 
a PPI network, thus allowing a larger gene-space to be 
explored. In summary, although these methods can sub‑
stantially improve the interpretation of DNAm changes 
in EWAS, they are nevertheless limited by the quality of 
the modelling between methylation and gene expression.

Another set of integrative algorithms are tailored 
for integrating DNAm data that are generated in con‑
junction with other data types for the same samples: 
for instance, this may include mutations, copy-number 
variants (CNVs), mRNA, microRNAs (miRNAs) and 
protein expression161. Analysing individual data types 
separately and subsequently correlating resulting clus‑
ters has been a popular strategy162; however, perform‑
ing simultaneous inference using all data types together 
offers, in principle, a much more powerful and unbiased 
framework in which to identify system-level associa‑
tions and extract novel biological insight. For instance, 
simultaneous inference may help to identify genes that 
are deregulated epigenetically or through CNVs in a 
mutually exclusive fashion151,163. Although many statis
tical algorithms for multi-omic integrative analyses 
exist, their application to multi-omic data remains 
challenging, owing to the high-dimensional nature  
of the data but also because the effect of confounders on 
the inference is poorly understood. So far, a joint NMF 
algorithm was applied to the matched DNAm, mRNA 
and miRNA expression data sets for ovarian cancer 
from The Cancer Genome Atlas (TCGA), revealing 
novel perturbed pathways164. An integrative DNAm and 
mRNA analysis of oestrogen receptor (ER)+ breast can‑
cer used a joint latent variable algorithm, called iClus‑
ter/iCluster+137,139,165, demonstrating that ER+ breast 
cancer transcriptomic subtypes differ epigenetically 
mainly only in terms of the level of DNAm de
regulation138. Other algorithms and techniques for joint 
multi-omic matrix factorization analyses are available, 

TF hubs
In the context of a regulatory 
network where edges represent 
regulatory interactions 
between transcription factors 
(TFs) and target genes, those 
TFs with the largest number of 
interactions.
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yet they remain largely unexplored in a DNAm context. 
For instance, joint and individual variation explained 
(JIVE) (TABLE 1) is a powerful multi-dimensional matrix 
factorization algorithm that can identify sources of data 
variation that are common to multiple data types, as 
well as those that are unique to each data type166,167. If 
multi-omic data are matched across all dimensions (for 
example, the same genes and samples measured for two 
different tissues or data types), they can be packed into 
a multi-dimensional array known as a tensor, for which 
non-Bayesian (parallel factor analysis (PARAFAC)168) 
and Bayesian (sparse decomposition analysis (SDA)169) 
tensor decomposition algorithms are available (TABLE 1). 
By approximating the data tensor as a sum of products 
of simple latent component vectors, one for each data 
type, these models are readily interpretable, with the 
Bayesian version less prone to overfitting. A recent 
study applied SDA to a third-order tensor of expression 

values defined over 20,000 genes, 845 individuals and 
3 tissue types (skin, adipose and lymphoblasts), sub‑
sequently correlating the latent components to SNPs 
and revealing trans-eQTL gene networks that were 
either common or unique to different tissue types, thus 
helping to delineate tissue-specific functional effects of 
GWAS SNPs169. Thus, tensorial methods should also be 
particularly suitable for elucidating tissue-specific and 
tissue-independent mQTLs in EWAS profiling multiple 
tissue types.

Conclusions and future directions
Recent studies underline the importance of DNAm 
as a focal point for elucidating and understand‑
ing diverse phenomena, including ageing pheno‑
types8,77,170–172, functional effects of GWAS variants30,122, 
the causal pathways between environmental factors 
and disease risk18,51,154,173,174, cell-type heterogeneity 
and stochasticity63,68,174,175, cancer evolution and meta
stasis66,67,69,176,177 and 3D chromatin architecture106,178. 
Furthermore, they highlight potential downstream 
applications, including cancer risk prediction68,179,180, 
prediction of frailty and all-cause mortality181–183 and 
non-invasive detection of cancer and tissue of origin 
from ctDNA in blood plasma16,40,184. For many of these 
efforts, cell-type heterogeneity and deconvolution will 
continue to pose challenges. Indeed, most of the algo‑
rithms for system-level integration that compute cor‑
relations between features do not adjust for cell-type 
heterogeneity, yet this adjustment is paramount for 
correct interpretability. Another outstanding challenge 
is that current algorithms do not allow for the iden‑
tification of the specific cell type (or types) carrying 
the DMCs, thus requiring laborious follow‑up exper‑
imental validation in purified samples. The potential 
limitation of cell–cell interactions for the accuracy of 
reference profiles used in reference-based inference 
also needs to be assessed. Hybrid approaches that gen‑
erate reference DNAm (or RNA-seq) profiles for differ‑
ent types of single cells in a small number of individuals 
could be a fruitful strategy for constructing improved 
reference profiles that are tailored to the tissue of 
interest185. Ultimately, the level of resolution required 
by cell-type deconvolution strategies also needs to be 
determined, as epigenetic and DNAm heterogeneity 
exists right down to the single-cell level186. Thus, 
quantification of functional epigenetic heterogeneity 
will be a key problem for the future. Related to this, 
it is also unclear whether DNAm or mRNA expres‑
sion is better suited for cell-type deconvolution26,34,37 
and whether joint analysis of data types could further 
improve inference. The generation of gold-standard 
data sets, artificial and real, is challenging yet abso‑
lutely necessary to ensure objective comparisons of 
existing and upcoming statistical algorithms48. In par‑
ticular, a large comparative and comprehensive analysis 
of cell-type deconvolution algorithms, including novel 
semi-reference-free methods, which are particularly 
amenable for Bayesian treatment, is urgently needed.

Feature selection and inference of causality in 
EWAS also remain a considerable challenge, even when 

Figure 3 | Examples of system-level integrative analysis of DNA methylation 
data. Aa | To establish causal pathways for observed associations between an 
exposure, mediator and outcome, genotype can be used as a causal anchor.  
Ab | To strengthen causal inference from exposure to outcome and from exposure to 
mediator, a genetic variant (G1) or combination of multiple variants that robustly 
correlate with the exposure can be used. Solid lines represent the established 
association of the instrumental variable (single-nucleotide polymorphism (SNP)) with 
the factor for which it is acting as a proxy, and dashed lines represent the relationships 
being tested in the Mendelian randomization (MR) framework. The association of G1 
with the outcome (and mediator) provides evidence of a causal impact of the 
exposure on these factors. Ac | When considering the causal pathway from the 
mediator (DNA methylation (DNAm)) to the outcome, a second genetic variant (G2) or 
combination of multiple variants can be used. G2 is a cis methylation quantitative trait 
locus (cis-mQTL) that robustly correlates with the DNAm site of interest. Details of the 
statistical methods to implement this MR approach are further described in BOX 3. G1 
and G2 analyses can, if desired, be conducted in entirely different sample sets with 
causal inference remaining valid. Ad–f | An application of this conceptual framework 
is shown in which the exposure–outcome setting is smoking and lung cancer and the 
proposed mediator is DNAm at the AHRR gene locus173. SNPs at the CHRNA locus are 
an established proxy for smoking heaviness and have been used in an MR 
framework206. Their application here can corroborate established evidence for the 
causal role of smoking in lung cancer as well as interrogate the causal role for 
methylation as a mediating mechanism. B | Integration of DNAm data with matched 
SNPs and mRNA expression can be used to elucidate the role of genome-wide 
association study (GWAS) SNPs. For instance, a genetic variant defining a cis 
expression QTL (cis-eQTL) for a transcription factor (TF) can be found to be associated 
with a large number of trans-mQTLs. For cis-eQTLs associated with increased TF 
activity, these trans-mQTLs exhibit a skew towards hypomethylation (loss of 
methylation is indicated by the transition Cm (methylated cytosine) to C (cytosine)) 
and are enriched for binding sites of this TF and for cis expression quantitative trait 
methylation loci (cis-eQTMs) defined by the corresponding TF gene targets. An 
example of a SNP associated with ulcerative colitis illustrates how relevant disrupted 
pathways can be identified122. C | Like mRNA expression, promoter DNAm exhibits 
modularity, that is, stronger correlations between genes that interact in a 
gene-functional network (for example, a protein–protein interaction (PPI) network). 
This modularity and the association between promoter DNAm and mRNA expression 
can be exploited to identify gene modules that are significantly deregulated at both 
transcriptomic and epigenetic levels. The Functional Epigenetic Modules (FEM) 
algorithm (TABLE 1) can be used to identify such hotspots of deregulation. A successful 
application of FEM to endometrial cancer uncovered the gene HAND2, a target of the 
progesterone receptor, which is hypermethylated and silenced in pre-neoplastic 
lesions and in cancer and which has been shown to drive endometrial 
carcinogenesis134,154. Another gene module is centred around TGFB1I1 (also known as 
HIC5), a known co‑activator of the progesterone receptor. Part C is adapted with 
permission from REF. 207, Springer.

◀

Expression quantitative 
trait methylation loci
(eQTMs). Genes whose 
expression levels are 
correlated with the DNA 
methylation level of a CpG. If 
the CpG occurs close to the 
gene (within a 250 kb window), 
it is called a cis-eQTM. 

Tensor
A multi-dimensional array with 
the number of dimensions 
often called the ‘order’ or ‘rank’ 
of the tensor and for which 
linear decomposition 
algorithms are available, 
analogous to linear matrix 
factorization algorithms for 
data matrices. Scalars, vectors 
and matrices are tensors of 
order 0, 1 and 2, respectively.
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adjustment for cell-type heterogeneity is possible, as 
features may still be susceptible to reverse causation or 
confounding by other unknown factors. Longitudinal 
prospective studies can avoid some reverse causation 
effects, and using genotype as a causal anchor via 
Mendelian randomization can further help to exclude 
the effects of confounders, but all this does not cur‑
rently provide a panacea to the problem. Causal infer‑
ence methods often rely on model assumptions (for 
example, linearity) that may not hold and that may 
lead to residual confounding and to wrong or conflict‑
ing conclusions. Measurement errors, such as in epi
demiological variables, further exacerbate this problem. 
Thus, as recently proposed115, causal inference methods 
may need to incorporate prior biological information 
from the outset in order to strengthen inference: for 
instance, guided by recent studies demonstrating that 
trans-mQTLs at TF binding sites could help to de
lineate the effects of non-coding GWAS SNPs122, it will 
be of great interest to extend causal-inference metho
dology to such multi-locus scenarios. Alternatively, 
breakthrough experimental techniques that allow 
single-locus and multi-locus epigenome editing187 will 
shed new light on epigenetic function and causality, yet 
these will also require the development of novel sta‑
tistical procedures to fully interpret the effects of epi
genetic perturbations. Another emerging challenge for 
feature selection is the presence of stochastic epigenetic 
perturbations, exemplified by DNAm outliers in nor‑
mal tissue that predate disease onset and that may be 
indicators of disease risk (for example, normal tissue at 
risk of cancer development)55. A particular challenge 

is distinguishing DNAm outliers that mark shifts in 
the epiallele composition of a tissue (contributing to 
epigenetic mosaicism) from DNAm outliers driven by 
technical or other confounders.

More generally, analysing DNAm in conjunction 
with other epigenetic and functional data promises to 
improve our understanding of ‘system epigenomics’. 
However, this will require sophisticated statistical mod‑
elling, which could benefit from harnessing innovative 
approaches used in other fields, such as engineering, 
artificial intelligence and physics. Although the value 
of advanced machine-learning methods (for example, 
deep neural networks) is undeniable15,129,188,189, extract‑
ing novel biological insight from them is often lim‑
ited. Thus, we envisage that phenomenological models 
inspired or built on physical models190–193 could capture 
the right level of complexity to extract and harness 
useful biological insight. Along these lines, integrative 
analysis of multi-omic data, potentially at the single-cell 
level and within the framework of statistical mechan‑
ics models186,191,194–198, may allow construction of epi‑
genetic landscapes as envisaged by Waddington106,193, 
which in turn may help to elucidate systems-biological  
principles underlying diverse phenomena such as tissue 
homeostasis and cancer.

The rapid growth and availability of statistical tools 
to integrate, analyse and make inferences about DNAm 
data are encouraging. Such developments continue to 
address the challenges faced by the field, and funda
mental to these developments is an understanding of 
both the statistical characteristics of the data being used 
as well as the biological phenomena they represent.
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FURTHER INFORMATION
European BLUEPRINT Epigenome Mapping Consortium: 
http://www.blueprint-epigenome.eu
European Genome–Phenome Archive (EGA):  
https://www.ebi.ac.uk/ega
Gene Expression Omnibus (GEO):  
http://www.ncbi.nlm.nih.gov/geo
Human Epigenome Atlas:  
http://www.epigenomeatlas.org
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http://www.roadmapepigenomics.org
Genetics of DNA Methylation Consortium:  
http://www.godmc.org.uk/
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