
Vol.:(0123456789)1 3

European Journal of Epidemiology 
https://doi.org/10.1007/s10654-021-00779-9

CARDIOVASCULAR DISEASE

Genetically predicted body composition in relation to cardiometabolic 
traits: a Mendelian randomization study

Hailuan Zeng1 · Chenhao Lin2 · Sijia Wang3,4 · Yan Zheng2 · Xin Gao1

Received: 4 February 2021 / Accepted: 22 June 2021 
© Springer Nature B.V. 2021

Abstract
Fat mass and fat-free mass are found to be associated with different health outcomes in observational studies, but the 
underlying causality remains unclear. We aimed to investigate the causal relationships between body composition and car-
diometabolic traits using a two-sample Mendelian randomization (MR) approach. Independent genetic variants associated 
with body fat mass, fat-free mass, and fat percentage in UK Biobank population were used as genetic instrumental variables, 
and their causal effects on circulatory diseases, type 2 diabetes, glycemic traits, and lipid fractions were estimated from 
large-scale genome-wide association studies (GWAS) in European populations. Univariable, multivariable, and bidirectional 
MR analyses were performed. Genetically predicted high fat mass and fat percentage significantly increased risks of most 
cardiometabolic diseases, and high fat-free mass had protective effects on most cardiometabolic diseases after accounting 
for fat mass. Fat mass, fat-free mass, and fat percentage were all positively associated with higher risks of atrial fibrillation 
and flutter, varicose veins, and deep vein thrombosis and pulmonary embolism. High fat mass increased fasting glucose, 
homeostasis model assessment-insulin resistance (HOMA-IR), triglycerides, decreased high-density lipoprotein cholesterol, 
and high fat-free mass reduced HOMA-IR, triglycerides, and low-density lipoprotein cholesterol. Genetically predicted fat-
free mass was bidirectionally negatively associated with 2-h glucose and total cholesterol. The findings may be helpful in 
risk stratification and tailoring management of body composition in patients with different cardiometabolic statuses.
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Introduction

Numerous epidemiological studies have established an 
association between higher body mass index (BMI) and the 
increased risks of diseases. However, BMI is not an ideal 
measure to represent anthropometric characteristics, as it 
does not distinguish between fat mass and fat-free mass. 
Assessing body composition is important because fat tissue 
has different physiological properties from non-fat tissues, 
and they may pose distinct influences on health. Several 
observational studies have documented detrimental impacts 
of fat accumulation and beneficial impacts of higher lean 
mass on glucose metabolism [1, 2] and cardiovascular health 
[3, 4], but some others found no protective role of lean mass 
on major adverse cardiovascular events [5] and that lean 
mass is the predominant anthropometric risk factor for atrial 
fibrillation [6, 7].

Mendelian randomization (MR) uses genetic variants 
associated with an exposure of interest as instrumental vari-
ables to assess its causal effect on an outcome of interest 
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[8]. It can be thought of as analogous to a randomized 
controlled trial (RCT) wherein individuals are naturally 
assigned at birth to inherit genetic variants that affect a risk 
factor, and therefore, are randomly allocated to variation in 
levels of the exposure, rather than randomized allocation 
to an intervention (e.g., a drug or a treatment) [8]. It is less 
vulnerable to biases from confounding and reverse causation 
since the random allocation of the genetic variants occurs at 
conception and is typically unassociated with confounders. 
It has been widely used to test causal relationships between 
BMI and health outcomes [9–11]. However, there is scarce 
research on the causal effects of body fat mass, fat-free mass 
or their proportion (i.e., fat percentage) on cardiometabolic 
traits. The few MR studies reported that fat mass index was 
associated with most cardiovascular traits [12], higher fat-
free mass causally increased risk of atrial fibrillation [13], 
higher lean mass causally protected against type 2 diabetes 
and diabetes reduced lean mass [14], and both genetically 
predicted fat mass and fat-free mass were associated with 
varicose veins [15].

In the present study, we hypothesize that body fat mass 
and fat-free mass have distinct causal relationships with 
cardiometabolic traits. We carried out MR analyses inves-
tigating the causal effects of fat mass, fat-free mass and fat 
percentage on 8 cardiometabolic diseases, 4 glycemic traits, 
and 4 lipid fractions using well-powered genetic instruments 
from UK Biobank and summary data from large-scale 
genome-wide association studies (GWAS) in European 
populations.

Methods

Genetic instruments for body composition

The primary exposure phenotype of interest was body com-
position, and the GWAS summary data of body fat mass 
(n = 454,137), fat-free mass (n = 454,850), and fat percent-
age (n = 454,633) in UK Biobank population from the MRC 
integrative Epidemiology Unit (MRC-IEU) OpenGWAS 
database [16] were used to identify genetic instruments for 
our MR analyses. Body composition of UK Biobank par-
ticipants was assessed using the Tanita BC418MA body 
composition analyzer. The details of the GWAS pipeline for 
the full UK Biobank (version 3, March 2018) genetic data 
can be accessed on https:// data. bris. ac. uk/ data/ datas et/ pnoat 
8cxo0 u52p6 ynfae keigi. GWAS was conducted using linear 
mixed model (LMM) association method as implemented in 
BOLT-LMM (v2.3), adjusting for sex and genotyping array. 
The analyses were restricted to autosomal variants and the 
population had been restricted to individuals of European 
ancestry after standard exclusion. Genetic instrumental 
variables were extracted using the “extract_instruments” 

function of the R package TwoSampleMR on the MR-Base 
platform [17] with default parameters (p < 5e-8, linkage dis-
equilibrium (LD) r2 < 0.001, > 10,000 kb), and 435, 556, and 
395 instrumental variables for fat mass, fat-free mass, and 
fat percentage respectively were obtained (Supplementary 
Table 1). There were 24 overlapping instrumental variables 
between fat mass and fat-free mass, 151 overlapping instru-
mental variables between fat mass and fat-percentage, and 
9 overlapping instrumental variables between fat-free mass 
and fat percentage (Supplementary Fig. 1). We used MR 
Steiger directionality test to calculate R2 values (variance 
of exposure explained by the instrumental variables), and 
F statistics were used to assess the strength of relationships 
between instrumental variables and phenotypes [18].

GWAS summary data of cardiometabolic traits

GWAS summary data of cardiometabolic traits consisting 
the most homogeneous populations of European ancestry 
while minimizing sample overlap with UK Biobank pop-
ulation, having the largest sample sizes and covering the 
majority of instrumental SNPs of the exposure phenotype 
(i.e., body composition) were selected. Data sources and 
related information are presented in Supplementary Table 2. 
The FinnGen study is a public–private partnership project 
combining genotype data from Finnish biobanks and digital 
health record data from Finnish health registries. Detailed 
methods (e.g., participating biobanks/cohorts, data collec-
tion, endpoints, genotyping and data analysis) are presented 
on its webpage (https:// finng en. gitbo ok. io/ docum entat ion/). 
The mixed model logistic regression package SAIGE [19] 
was used for GWAS, with sex, age, 10 principal components 
(PCs) and genotyping batch included as covariates. Values of 
homeostasis model assessment-insulin resistance (HOMA-
IR) and fasting insulin were log-transformed, values of total 
cholesterol, triglycerides, high-density lipoprotein (HDL) 
cholesterol, and low-density lipoprotein (LDL) cholesterol 
were inverse normal transformed prior to GWAS.

Mendelian randomization methods

One of the main assumptions of MR states that the genetic 
instruments should only be related to the outcome of interest 
through the instrumented exposure—that is, an absence of 
horizontal pleiotropy[8]. Horizontal pleiotropy is common 
and may occur when a variant affects the exposure and the 
outcome through separate mechanisms (uncorrelated plei-
otropy) or through a shared heritable process or pathway 
(correlated pleiotropy) [20]. The complementary methods of 
two-sample MR adopted in the present study make different 
assumptions about horizontal pleiotropy.

In general, apart from the conventional inverse variance 
weighted (IVW) method [8], weighted median [21] allows 

https://data.bris.ac.uk/data/dataset/pnoat8cxo0u52p6ynfaekeigi
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some horizontal pleiotropy of any kind; MR-Egger [22] 
and MR-PRESSO [23] (Mendelian Randomization Plei-
otropy RESidual Sum and Outlier) allow for directional 
uncorrelated pleiotropy; CAUSE [20] (Causal Analysis 
Using Summary Effect estimates) accounts for uncorre-
lated and correlated pleiotropy simultaneously; multivari-
able MR (MVMR) [24] addresses “measured” pleiotropic 
effects by accounting for a specific exposure.

In the present analyses, IVW, MR-Egger, weighted 
median, and MVMR as well as tests for directional hori-
zontal pleiotropy by Egger-intercept were conducted using 
the MR-Base [17] R package TwoSampleMR version 0.5.5 
with default parameters (LD r2 ≥ 0.8 for proxy SNPs if 
available and minor allele frequency ≤ 0.3 for strand align-
ing for palindromic SNPs when necessary). MR-PRESSO 
was conducted using the MRPRESSO R package version 
1.0 (https:// github. com/ rondo lab/ MR- PRESSO). The num-
ber of distributions was set to 10,000 and the threshold 
was set to 0.05. We present results from MR-PRESSO raw 
tests unless p value for MR-PRESSO global test was lower 
than 0.05 and the result from outlier-corrected test was 
given. We performed CAUSE using the R package cause 
version 1.2.0 (https:// github. com/ jean9 97/ cause). Briefly, 
GWAS summary data of the exposure and the outcome 
were merged and formatted, followed by nuisance param-
eters estimation with a sample of 1000,000 unique vari-
ants. LD pruning was conducted for SNPs with p values 
lower than 1e-3 (default) for both the exposure and the 
outcome, with LD estimates in the 1000 Genomes CEU 
population (https:// zenodo. org/ record/ 14643 57#. X5ozQ 
FMzbAJ) as the reference panel. We applied MVMR to 
identify the independent causal effects of fat mass, fat-free 
mass, and fat percentage, accounting for the potential plei-
otropic influence of each other, on cardiometabolic traits. 
In MVMR1, fat mass and fat-free mass were included as 
exposures; In MVMR2, fat mass and fat percentage were 
included as exposures; In MVMR3, fat-free mass and fat 
percentage were included as exposures.

Bidirectional Mendelian randomization

We conducted bidirectional MR analyses to test whether 
there was any evidence for causal effects of cardiometa-
bolic traits on body composition. For each trait, SNPs with 
p < 5e-8, LD r2 < 0.001 (clumping window 10,000 kb) were 
extracted (Supplementary Table 3). Similarly, IVW, MR-
Egger, weighted median, MR-PRESSO and CAUSE were 
applied. GWAS of HOMA-IR had no significant (p < 5e-8) 
SNPs, bidirectional MR using other methods could not be 
performed, and CAUSE was regarded as the primary analy-
sis. GWAS of 2-h glucose had only one instrumental SNP; 
therefore, only Wald ratio test and CAUSE were applied.

Statistical analyses

The MR methods were applied to investigate causal effects of 
genetically predicted fat mass, fat-free mass and fat percent-
age respectively on each outcome in turn and vice versa for 
bidirectional MR. Each effect represents the estimated causal 
odds ratio (OR) of cardiometabolic diseases, or change of 
fasting glucose, 2-h glucose, log-transformed fasting insulin 
or HOMA-IR, or inverse normal transformed total choles-
terol, triglycerides, HDL cholesterol, or LDL cholesterol in 
response to per standard deviation (SD) increase of fat mass, 
fat-free mass, or fat percentage, respectively.

A consistent effect estimation across the MR methods 
is not likely to be a false positive. The conventional IVW 
method was used as the primary univariable analysis, and 
MR-Egger, weighted median, MR-PRESSO, and CAUSE 
were used as sensitivity analyses. We considered the rela-
tionships significant if the directions of the estimates by 
the 5 methods were consistent, the IVW method passed the 
Bonferroni-corrected significance level (0.05/16 = 3.13e-3), 
no significant pleiotropy was detected by MR-Egger (i.e., 
p value of Egger-intercept term was ≥ 0.05) or p value of 
MR-Egger regression was < 0.05, and p values of weighted 
median, MR-PRESSO and CAUSE were lower than 0.05. 
For MVMR, p values < 3.13e-3 were considered significant 
and p values between 3.13e-3 and 0.05 were considered sug-
gestive evidence of causal associations. All statistical tests 
were two-tailed, and analyses were conducted with R ver-
sion 3.6.2.

Results

In MR analyses assessing causal effects of body compo-
sition on cardiometabolic traits, numbers of instrumental 
variables used in the final analyses ranged between 281 and 
409 for fat mass, between 315 and 523 for fat-free mass, 
and between 255 and 370 for fat percentage (Supplementary 
Table 4). F statistics ranged between 65 and 109, which were 
much higher than 10 and indicated small possibility of weak 
instrument bias (Supplementary Table 4).

Causal effects of body composition 
on cardiometabolic diseases

In univariable MR, genetically predicted high fat mass was 
causally associated with higher risks of 7 cardiometabolic 
diseases, including and with decreasing magnitude of associ-
ation: type 2 diabetes, atrial fibrillation and flutter, varicose 
veins, deep vein thrombosis (DVT) and pulmonary embo-
lism (PE), hypertension, ischemic heart diseases, and major 
coronary heart disease (CHD) event. Causal ORs estimated 
using IVW method ranged between 1.16 (95% CI: 1.05 to 

https://github.com/rondolab/MR-PRESSO
https://github.com/jean997/cause
https://zenodo.org/record/1464357#.X5ozQFMzbAJ
https://zenodo.org/record/1464357#.X5ozQFMzbAJ
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1.28) and 1.91 (1.68 to 2.18) per SD increase of fat mass 
with p values < 3.13e-3 (Fig. 1 and Supplementary Table 5). 
IVW causal OR of stroke was 1.19 (95% CI: 1.10 to 1.29) 
with p = 2.71e-5, but beta estimate from weighted median 
MR was insignificant (p = 0.055). Genetically predicted high 
fat-free mass showed causal effects on higher risks of atrial 
fibrillation and flutter, varicose veins, and DVT and PE, 
but was not associated with risks of other cardiometabolic 
diseases investigated (Fig. 1 and Supplementary Table 5). 
Genetically predicted high fat percentage was significantly 
associated with higher risks of type 2 diabetes, atrial fibril-
lation and flutter, DVT and PE, hypertension, varicose 
veins, and ischemic heart diseases. MR-Egger regression 
of major CHD event on fat percentage indicated pleiotropy 
(Egger intercept p = 0.031) and p value was higher than 0.05 
(p = 0.253). Besides, causal effect of fat percentage on stroke 
estimated by CAUSE was insignificant (p = 0.110) (Fig. 1 
and Supplementary Table 5).

In MVMR1, fat mass showed greater causal effects 
than those estimated by univariable MR on higher risks of 
ischemic heart diseases, major CHD event, hypertension, 
stroke, and type 2 diabetes; whereas fat-free mass showed 
protective effects on them. And causal effects of fat mass and 
fat-free mass on atrial fibrillation and flutter, varicose veins, 
and DVT and PE were all attenuated in MVMR1 than those 
in univariable MR (Fig. 1 and Supplementary Table 5). In 
MVMR2, both fat mass and fat percentage had little inde-
pendent causal associations with ischemic heart diseases, 
major CHD event, or stroke. Intriguingly, fat mass had 
greater causal associations with higher risks of atrial fibril-
lation and flutter, varicose veins, DVT and PE, hypertension, 
and type 2 diabetes in MVMR2 compared with univariable 
MR estimates, and fat percentage turned out insignificantly 
or negatively associated with them after accounting for fat 
mass. These results indicated that the effects of fat mass 
might outweigh those of fat percentage on these cardio-
metabolic diseases. MVMR3 including fat-free mass and 
fat percentage as exposures suggested that fat percentage 
but not fat-free mass was associated with higher risks of 
the cardiometabolic diseases except for atrial fibrillation and 
flutter, varicose veins, and DVT and PE.

Causal effects of body composition on glycemic 
traits

Univariable MR revealed that per SD increase of fat mass, 
fat-free mass and fat percentage were associated with 0.05 
(95% CI: 0.03 to 0.08) mmol/L, 0.06 (95% CI: 0.03 to 0.09) 
mmol/L, and 0.08 (95% CI: 0.05 to 0.11) mmol/L increase of 
fasting glucose, respectively. After accounting for fat mass 
in MVMR1, fat-free mass had no significant causal effect 
on fasting glucose (p = 0.475) (Fig. 2 and Supplementary 
Table 6). None of fat mass, fat-free mass, or fat percentage 

was significantly associated with 2-h glucose in univariable 
MR, but high fat-free mass significantly reduced 2-h glucose 
level after accounting for fat mass or fat percentage (MVMR 
causal effects: −0.051 mmol/L and −0.38 mmol/L per SD 
increase of fat-free mass, respectively).

Both high fat mass and high fat percentage were signifi-
cantly and causally associated with high levels of fasting 
insulin and HOMA-IR in univariable MR and after account-
ing for fat-free mass. IVW causal effects were 0.14 (95% CI: 
0.11 to 0.17) pmol/L and 0.18 (95% CI: 0.14 to 0.23) pmol/L 
increase of log- fasting insulin, and 0.13 (95% CI: 0.10 to 
0.17) unit and 0.18 (95% CI: 0.12 to 0.23) unit increase of 
log- HOMA-IR per SD increase of fat mass and fat per-
centage, respectively. MVMR anslyses showed that high fat 
mass was the predominant causal factor of higher fasting 
insulin and HOMA-IR, while fat-free mass was negatively 
associated with them after accounting for fat mass (MVMR 
causal effects: -0.12 pmol/L of log- fasting insulin and -0.08 
unit of log- HOMA-IR per SD increase of fat-free mass, 
respectively).

Causal effects of body composition on lipid fractions

As shown in Fig. 3 and Supplementary Table 7, per SD 
increase of fat mass and fat percentage were associated with 
0.13 (95% CI: 0.07 to 0.18) and 0.14 (95% CI: 0.06 to 0.23) 
SD increase of triglycerides, respectively. The effect of fat 
mass became greater after accounting for fat-free mass or 
fat percentage (MVMR causal effects: 0.32 and 0.44 SD, 
respectively). Per SD increase of fat-free mass was asso-
ciated with 0.21 SD decrease of total cholesterol in IVW 
MR analysis, and high fat-free mass causally reduced levels 
of triglycerides, total cholesterol and LDL cholesterol after 
accounting for fat mass or fat percentage (Fig. 3 and Supple-
mentary Table 7). We observed no significant causal effect 
of fat mass or fat percentage on total cholesterol or LDL cho-
lesterol. Univariable MR analyses showed that genetically 
predicted fat mass, fat-free mass and fat percentage were all 
negatively associated with HDL cholesterol, and MVMR 
analyses suggested that fat mass was the predominant causal 
factor that reduced HDL cholesterol level (MVMR causal 
effects: −0.30 and −0.82 SD per SD increase of fat mass in 
MVMR1 and MVMR2, respectively).

Causal effects of cardiometabolic traits on body 
composition

In bidirectional MR assessing causal effects of cardiometa-
bolic traits on body composition, numbers of instrumental 
variables used in the final analyses ranged between 1 and 86 
except for HOMA-IR, and F statistics ranged between 37 
and 573 (Supplementary Table 8).
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Fig. 1  Forest plots illustrating causal effects of genetically predicted 
body composition on cardiometabolic diseases. In MVMR1, fat 
mass and fat-free mass were included as exposures; In MVMR2, fat 
mass and fat percentage were included as exposures; In MVMR3, 

fat-free mass and fat percentage were included as exposures. For 
IVW method, p values < 3.13e-3 are marked bold. Tabular statis-
tics are presented in Supplementary Table 5. aMR-Egger intercept p 
value < 0.05
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Cardiometabolic diseases had little causal effect on 
body composition (Fig. 4 and Supplementary Table 9). Per 
mmol/L increase of 2-h glucose was associated with 0.05 
SD decrease of fat-free mass (Fig. 5 and Supplementary 
Table 10). Per SD increase of total cholesterol causally 
reduced 0.05 SD of fat mass and 0.04 SD of fat-free mass 
(Fig. 6 and Supplementary Table 11). Per SD increase of 
LDL cholesterol was associated with 0.04 SD decrease 
of fat mass (p = 1.89e-3) and 0.02 SD decrease of fat-free 
mass (p = 3.30e−3). There was little evidence to support 
other cardiometabolic traits causally influencing body 
composition.

Discussion

In the present study, we performed bidirectional MR 
analyses to investigate causal relationships between body 
composition and 8 cardiometabolic diseases, 4 glycemic 
traits, and 4 lipid fractions. Value-added findings are: (1) 
high fat mass and fat percentage causally increased risks 
of most cardiometabolic diseases, and high fat-free mass 
had protective effects on cardiometabolic diseases only 
after accounting for fat mass. All of them were positively 
associated with higher risks of atrial fibrillation and flut-
ter, varicose veins, and DVT and PE. (2) High fat mass 

Fig. 2  Forest plots illustrating causal effects of genetically predicted 
body composition on glycemic traits. In MVMR1, fat mass and fat-
free mass were included as exposures; In MVMR2, fat mass and fat 
percentage were included as exposures; In MVMR3, fat-free mass 

and fat percentage were included as exposures. For IVW method, p 
values < 3.13e-3 are marked bold. Tabular statistics are presented in 
Supplementary Table 6. aMR-Egger intercept p value < 0.05
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causally increased fasting glucose, fasting insulin, HOMA-
IR, triglycerides, decreased HDL cholesterol, and high fat-
free mass causally reduced 2-h glucose, fasting insulin, 
HOMA-IR, triglycerides, total cholesterol, and LDL cho-
lesterol. (3) High levels of 2-h glucose and total choles-
terol causally reduced fat-free mass.

Another two-sample MR study investigated the causal 
relationships between fat mass index, fat-free mass index 
and 14 cardiovascular conditions [12]. However, effects 
were estimated with MVMR and all the exposures and the 
14 outcomes were from UK Biobank, which were possibly 
biased by overfitting and brought the results close to phe-
notypic associations. Besides, the study had low power due 
to low proportions of cases. Their updated two-sample MR 

analysis using GWAS summary data from the DIAGRAM 
consortium and the Coronary ARtery DIsease Genome-
wide Replication and Meta-analysis plus The Coronary 
Artery Disease Genetics (CARDIoGRAMplusC4D) con-
sortium found that genetically predicted fat mass index 
was positively associated with type 2 diabetes and coro-
nary artery disease [25]. In the present study, we used 
GWAS summary data of cardiometabolic diseases from 
the FinnGen study, which had no sample overlap with UK 
Biobank. Our results confirmed that high fat mass was 
associated with ischemic heart disease, major CHD event, 
hypertension, type 2 diabetes, and stroke (after accounting 
for fat-free mass). We also found that the effect of high 
absolute fat mass might outweigh that of fat percentage 

Fig. 3  Forest plots illustrating causal effects of genetically predicted 
body composition on lipid fractions. In MVMR1, fat mass and fat-
free mass were included as exposures; In MVMR2, fat mass and fat 
percentage were included as exposures; In MVMR3, fat-free mass 

and fat percentage were included as exposures. For IVW method, p 
values < 3.13e-3 are marked bold. Tabular statistics are presented in 
Supplementary Table 7. aMR-Egger intercept p value < 0.05
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on cardiometabolic traits, which should be noted in 
body-building to keep fit. Previous observational studies 
reported that skeletal muscle mass was inversely associ-
ated with ten-year cardiovascular disease incidence [26], 
and loss of skeletal muscle mass might contribute to meta-
bolic diseases [27, 28]. By applying MVMR approach, we 
provided additional evidence that higher fat-free mass was 
causally associated with lower risks of type 2 diabetes, 

hypertension, stroke, ischemic heart diseases, and major 
CHD event only after adjusting for fat mass.

Prospective studies reported that higher lean body mass 
was predominantly and independently associated with 
increased risk of atrial fibrillation [6, 7]. A subsequent 
observational and MR study revealed that genetically pro-
grammed increases in fat mass and fat-free mass had inde-
pendent causal effects on atrial fibrillation risk [13], which 

Fig. 4  Forest plots illustrating causal effects of cardiometabolic diseases on body composition. For IVW method, p values < 3.13e-3 are marked 
bold. Tabular statistics are presented in Supplementary Table 9. aMR-Egger intercept p value < 0.05
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was in agreement with the present findings using the GWAS 
data of atrial fibrillation and flutter in Finnish population 
as the outcome. And roles of height, left atrial size, left 
ventricular mass, and myokines secreted by lean tissue on 
atrial fibrillation risk merit further exploration [29]. Geneti-
cally predicted high fat mass and fat-free mass also causally 
increased varicose veins and DVT and PE risk. A previous 
study in UK Biobank participants found greater body height 
as an independent risk factor for varicose vein disease after 
the adjustment for traditional risk factors in Cox regression, 
and MR analysis further supported the causal association 
[30]. Body height had also been reported to be an independ-
ent predictor and risk factor of venous thromboembolism in 
epidemiological [31] and MR studies [32]. One potential 
explanation is that the effects of fat mass and fat-free mass 
were mediated through body height, as taller individuals 
tend to have higher fat mass and fat-free mass.

Intriguingly, fat mass was positively associated with both 
fasting insulin and fasting glucose level, but had no signifi-
cant effect on 2-h glucose; while higher fat-free mass caus-
ally reduced 2-h glucose, but showed little effect on fasting 
glucose, and higher 2-h glucose was related with reduced 
fat-free mass. Another MR study reported that lean mass 
was inversely associated with risk of type 2 diabetes and 
vice versa, but lean mass showed no association with fasting 
insulin or fasting glucose [14]. These results reflected dif-
ferent pathophysiological mechanisms of fasting and post-
prandial glucose metabolism. Elevated endogenous glucose 

production and insulin resistance is common in individuals 
with adiposity, which leads to higher fasting glucose, fasting 
insulin and HOMA-IR. Skeletal muscle is the major organ 
where insulin-mediated glucose uptake by glucose trans-
porter 4 (GLUT4) takes place, thus higher muscle mass may 
reduce postprandial glucose as a sink for glucose disposal. 
Clinical trials and other studies have also shown that exer-
cise lowered postprandial glucose but not fasting glucose in 
type 2 diabetes [33]. Hyperglycemia or insulin resistance 
result in decreased protein synthesis, which may accelerate 
muscle loss [34]. Taken together, these results suggested that 
tailored interventions to rebuild body composition could be 
considered in individuals with fasting or postprandial hyper-
glycemia, and patients with high postprandial glucose might 
break out of the vicious cycle by increasing muscle mass.

Genetically predicted fat mass and fat-free mass also 
showed disparities in causal relationships with lipid frac-
tions. High fat mass increased triglycerides and reduced 
HDL cholesterol, and high fat-free mass mainly reduced 
total and LDL cholesterol. Previous MR studies examin-
ing the associations of BMI and cardiovascular risk factors 
showed causal effects of adiposity on higher triglycerides 
and lower HDL cholesterol, but no association between BMI 
and LDL cholesterol [35] or observed the negative causal 
association [36]. RCT of bariatric surgery also reported 
that intensive weight loss reduced plasma triglycerides and 
increased HDL cholesterol levels, but did not lower LDL 
cholesterol [37]. We were not aware of any other MR studies 

Fig. 5  Forest plots illustrating causal effects of glycemic traits on body composition. For IVW method, p values < 3.13e-3 are marked bold. 
Tabular statistics are presented in Supplementary Table 10
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investigating causal relationships between body composi-
tion and lipids. Our findings indicated that losing fat mass 
and increasing muscle mass simultaneously could be rec-
ommended to obtain a favorable lipid profile. Furthermore, 
total cholesterol and LDL cholesterol were both negatively 
associated with fat mass and fat-free mass. This may par-
tially explain why cholesterol-lowering medications such as 
statins have been reported to increase body weight and raise 
diabetes risk [38].

Some limitations warrant mention. First, there might 
be some sample overlap between UK Biobank and the 
Meta-Analyses of Glucose and Insulin-related traits Con-
sortium (MAGIC) or the Global Lipids Genetics Consor-
tium (GLGC). We assumed the proportion of overlapping 
samples between UK-based cohorts and UK Biobank was 
about 5%, and sample overlaps between MAGIC and UK 
Biobank or GLGC and UK Biobank were estimated to 
be less than 1% [39–42]. Second, our results could have 
been biased by other potential pitfalls of MR studies. For 
example, the low response in UK Biobank (5.5%) and that 
UK Biobank participants were less likely to be obese, to 
smoke, to drink alcohol, and were “healthier” compared 

with the general population [43] could have resulted in 
selection bias [44]. Unobserved environmental confounds 
might exist due to differences in diets and lifestyles 
between participants in UK and those in Finland [45]. 
Within family GWAS data might be useful in avoiding this 
bias. However, such data was not available at this stage. 
Third, the causal relationships were assessed in European 
populations, large-scale GWAS data of body composition 
in other ethnicities was unavailable and represents a future 
endeavor. Lastly, time-varying relationships and sex dif-
ferences need further investigation.

In summary, fat mass exerted detrimental effects on 
most cardiometabolic traits, fat-free mass had beneficial 
effects on most cardiometabolic traits after accounting for 
fat mass, and they had distinct causal associations with 
glycemic traits and lipid fractions. The findings may be of 
importance shedding light on risk stratification and tailor-
ing management of body composition in different groups 
of patients.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10654- 021- 00779-9.

Fig. 6  Forest plots illustrating causal effects of lipid fractions on body composition. For IVW method, p values < 3.13e-3 are marked bold. Tabu-
lar statistics are presented in Supplementary Table 11
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